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Abstract. Hawkes processes are a type of point process that models self-excitement among time
events. They have been used in a myriad of applications, ranging from finance and earth-
quakes to crime rates and social network activity analysis. Recently, a variety of different
tools and algorithms have been presented at top-tier machine learning conferences. This
work aims to give a broad view of recent advances in Hawkes process modeling and inference
suitable for a newcomer to the field. The parametric, nonparametric, deep learning, and
reinforcement learning approaches are broadly discussed, along with the current research
challenges for the topic and the real-world limitations of each approach. Illustrative appli-
cation examples in the modeling of retweeting behavior, earthquake aftershock occurrence,
and malaria outbreak modeling are also briefly discussed.
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1. Introduction. Point processes are tools for modeling the arrival of time events.
They have been broadly used to model both natural and social phenomena related to
the arrival of events in a continuous-time setting, such as the queuing of customers
in a given store, the arrival of earthquake aftershocks [63, 32], the failure of machines
at a factory, the request for packages over a communication network, and the death
of citizens in ancient societies [17].

Predicting, and thus being able to effectively intervene in, all these phenomena is
of huge commercial and/or societal value, and thus there has been intensive investi-
gation of the theoretical foundations of this field.

Hawkes processes (HPs) [29] are a type of point process that models self- and mu-
tual excitation, i.e., when the arrival of an event makes future events more likely to
happen. They are suitable for capturing epidemic, clustering, and faddish behavior
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within social and natural time-varying phenomena. The excitation effect is repre-
sented by an additional function term within the intensity of the process (i.e., the
expected arrival rate of events): the triggering kernel, which quantifies the influence
of events of a given process in the self- and mutual triggering of its associated intensity
functions. Much of HP research has been devoted to modeling the triggering kernels,
handling issues of scalability to a large number of concurrent processes and large
quantities of data, and addressing speed and tractability of the inference procedure.

Regarding the modeling of the triggering kernels, one method involves the as-
sumption that they can be defined by simple parametric functions, such as one or
multiple exponentials, Gaussians, Rayleigh, Mittag--Leffler [12] functions, and power
laws. Much of the work dealing with this type of approach is concerned with enriching
these parametric models [42, 84, 91, 90, 20], scaling them for high dimensions, i.e.,
multivariate processes of large dimensions [7, 44], dealing with distortions related to
restrictions on the type of available data [92], and proposing adversarial losses as a
complement to the simple maximum likelihood estimation (MLE) [94].

Another way of modeling the triggering function is by assuming that it is rep-
resented by a finite grid, in which the triggering remains constant along each of its
subintervals. In this piecewise constant (or nonparametric) approach, most notably
developed in [59, 8], the focus has been on speeding up the inference through paral-
lelization and online learning of the model parameters [96, 2].

A more recent approach, enabled by the rise to prominence of deep learning
models and techniques, accompanied by the increase in computational power and
availability of data over recent years, involves modeling the causal triggering effect
through the use of neural network models, most notably RNNs, LSTMs, and GANs.
These models allow for less bias and more flexibility than the parametric models in
modeling the triggering kernel, while taking advantage of the numerous training and
modeling techniques developed by the booming connectionist community.

In addition, regarding the control of self-exciting point processes, i.e., the mod-
ification of the process parameters into more desirable configurations while taking
into account an associated ``control cost"" to the magnitude of these modifications,
recent works make use of either dynamic programming (continuous Hamilton--Jacobi--
Bellman equation based approach) [99, 98], Kullback--Leibler divergence penalization
(a.k.a. ``information bottleneck"") [83], or reinforcement learning based or imitation
learning based techniques [80, 47].

Although there have been some interesting reviews and tutorials regarding domain-
specific applications of HPs in finance [30, 7] and social networks [69], a broad view of
the inference and modeling approaches is still lacking. A work similar to ours is [93],
which, although very insightful, lacks coverage of important advances such as the pre-
viously mentioned control approaches, as well as the richer variants of neural network
based models. Furthermore, a concise coverage of the broader class of temporal point
processes is given in [71], while reviews for parametric spatiotemporal formulations of
the HP are given in [67] and [97].

In what follows, we introduce the mathematical definitions involving HPs, then
carefully describe advances in each of the aforementioned approaches, and then finish
with a summary, along with some other considerations.

2. Theoretical Background. In this and the next section, we present the math-
ematical definitions used throughout the remaining sections of the paper. HPs con-
sidered were originally introduced in [29] and [28].

In the present work, we restrain ourselves to the marked temporal point process
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Fig. 1 Left: Intuitive diagram of a marked temporal point process (MTPP) with three types of events
(marks). Right: Example of a counting process on the time interval [0, 7].

(MTPP), i.e., the point process in which each event is defined by a time coordinate
and a mark (or label). An intuitive example of an MTPP is shown in Figure 1.

The key definitions below are those of counting process, intensity function, trigger-
ing kernel, impact matrix, (log-)likelihood, covariance, Bartlet spectrum, higher-order
moments, and branching structure.

2.1. Multivariate Marked Temporal Point Processes. Realizations of univari-
ate MTPPs, here referred to by \scrS , are one or more sequences of events ei, each a
function of the time coordinate tk and the mark mk, such as

(2.1) \scrS = \{ (t0,m0), . . . , (tS ,mS)\} ,

where S is the total number of events. Marks may represent, for example, a specific
user in a social network or a specific geographic location. For more complex problems,
such as in the check-in times prediction of [95], a composite mark may represent a
user of interest and a specific location.

An easy way to generalize this notation would be to refer to multiple realizations
of multivariate MTPPs as \scrS = \{ \scrS i,j\} , where i refers to the dimension of the process,
while j refers to the index of the sequence. Now, regarding only the purely temporal
portion of the process, i.e., the time coordinates tk, it is also common to express them
by means of a counting process N(t), which is simply the cumulative number of event
arrivals up to time t:

(2.2)

\int t

0 - 
dNs,

where
\bullet dNtk = 1 if there is an event at tk;
\bullet dNtk = 0 otherwise.

This is illustrated in Figure 1.
Associated to each temporal point process, there is an intensity function, which

is the expected rate of arrival of events,

(2.3) \lambda (t)dt = E \{ dNt = 1\} ,

which may or may not depend on the history of past events. Such dependence results
in a so-called conditional intensity function (CIF),

(2.4) \lambda (t)dt = E \{ dNt = 1| \scrH \} ,
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where \scrH is the history of all events up to time t:

(2.5) \scrH : \{ ti,j \in \scrS | ti,j < t\} .

This concept will be further discussed in the next section.

2.2. Hawkes Processes. The simplest example of a temporal point process is the
homogeneous Poisson process (HPP), in which the intensity is a positive constant:

(2.6) \lambda (t) = \mu 

for \mu \in \BbbR +.
In the case of an inhomogeneous Poisson process (IPP), the intensity \lambda (t) is

allowed to vary. Both the HPP and the IPP are shown in Figure 2.

Time

Intensity

: Event

Time

Intensity

: Event

Fig. 2 Illustrative examples of HPPs (left) and IPPs (right). The events are represented by black
dots.

HPPs and IPPs have in common the fact that each consecutive event interval sam-
pled from the intensity function is independent of the previous ones. When analyzing
several natural phenomena, one may wish to model how events in each dimension i of
the process---which may be representing a specific social network user, an earthquake
shock at a given geographical region, or a percentage jump in the price of a given
stock, just to cite a few examples---affect the arrival of events in all the dimensions of
the process, including its own.

In particular, we are interested in the cases where the arrival of one event makes
further events more likely to happen, which is reflected as an increase in the value
of the intensity function after the time of that event. When this increase happens
in the intensity function of the same ith dimension as the event, the effect is called
self-excitation. When the increase happens in the intensity of other dimensions, we
refer to it as mutual excitation.

HPs model self-excitation in an analytical expression for the intensity through
the insertion of an extra term that is designed to capture the effect of all the previous
events of the process in the current value of the CIF. For a univariate HP with constant
background rate, we have

(2.7) \lambda HP (t) = \mu \underbrace{}  \underbrace{}  
baseline intensity

+
\sum 
ti<t

\phi (t - ti)\underbrace{}  \underbrace{}  
self-excitation term

,

while, for the multivariate case with dimension D, we have both self-excitation (\phi ii(t))
and mutual excitation terms (\phi ij(t) s.t. (i \not = j)):

(2.8) \lambda iHP (t) = \mu i +

D\sum 
j=1

\sum 
tij<t

\phi ij(t - tij).

The assumptions of
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1. causality:
\phi (t) = 0 \forall t < 0;

2. positivity:
\phi (t) \geq 0 \forall t \geq 0

are usually held for all \phi ij(t).
1

Some works consider a time-dependent background rate \mu (t), to account for the
seasonal aspect of some phenomena such as disease outbreaks or crime rates [24, 79,
52, 24]. This is further discussed in section 9.

Now consider the case that the kernel matrix \Phi (t) = [\phi ij(t)]
d,n
i,j=0 can be fac-

tored into \Phi (t) = \bfitalpha \odot \bfitkappa (t), with \bfitalpha = [\alpha ij ]
d,n
i,j=0 and \bfitkappa (t) = [\kappa ij(t)]

d,n
i,j=0, where ``\odot ""

corresponds to the Hadamard (elementwise) product.
\bfitalpha , representing the impact matrix, can implicitly capture a myriad of different

patterns of self- and mutual excitation, as exemplified in Figure 3. This factorization is
particularly convenient when adding penalization terms related to network properties
to the loglikelihood-based loss of a multivariate HP, such as in [91] and [51].

i

j

j

i

t1

t2

t3 t6

t5

t4

t7

p13

p12 p25

p34

p56
p57

Fig. 3 Left: Four examples of 4\times 4 impact matrices \bfitalpha . Each \alpha ij(t) has the corresponding value in-
dicated by the color scale on the side. Right: Illustrative example of the concept of branching
structure. A given edge ti \rightarrow tj means that ti triggered tj with the probability pji.

To be of practical value, realizations of HPs are constrained to having a finite
number of events for any subinterval of the simulation horizon [0, T ]. This corresponds
to the kernel function (or kernel matrix) satisfying the following stationarity condition:

(2.9) \bfitS \bfitp \bfitr (| | \Phi (t)| | ) = \bfitS \bfitp \bfitr (\{ | | \phi ij(t)| | \} 1\leq i,j\leq D) < 1,

where | | \phi (t)| | corresponds to | | \phi (t)| | =
\int \infty 
0
\phi (t)dt and \bfitS \bfitp \bfitr (\cdot ) corresponds to the spec-

tral radius of the matrix, i.e., the largest value among its eigenvalues.
If this stationarity condition is satisfied, the process will reach a weakly stationary

state, i.e., when the properties of the process, most notably its ``moments,"" vary only
as a function of the relative distance, here referred to as ``\tau "", of its points.

The first-order moment, or statistics of the HP, is defined as

(2.10) \Lambda i = E\{ \lambda iHP (t)\} = lim
T\rightarrow \infty 

1

T

\int T

0

\lambda iHP (t)dt = (\BbbI  - | | \Phi (\bfitt )| | ) - 1
\mu i,

1The case in which \phi (t) < 0 for t \geq 0 is referred to as an ``inhibiting process"" and is not usually
considered in HP work.
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while the second-order statistics, or stationary covariance, is defined as

(2.11) \nu ij(t\prime  - t)dtdt\prime = E\{ dN i
tdN

j
t\prime \}  - \Lambda i\Lambda jdtdt

\prime  - \epsilon ij\Lambda i\delta (t
\prime  - t)dt,

where \epsilon ij is 1 if i = j, and 0 otherwise, while \delta (t) refers to the Dirac delta distribution.
The Fourier transform of this stationary covariance is referred to as the Bartlett

spectrum. Sometimes a different transform, the Laplace transform, is used for the same
purpose. In Hawkes's seminal paper [29], high importance is given to the fact that,
when assuming some specific parametric functions for the excitation matrix \Phi (\bfitt ), it
is possible to find simple formulas for the covariance of the process in the frequency
domain. One example is the univariate case for \phi (t) defined as the frequently used
``parametric exponential kernel"": \phi (t) = \alpha e - \beta t for \alpha , \beta \in \BbbR .

For this choice, we have

(2.12) \nu \ast (s) = \scrL \{ \nu \} (s) = \alpha \mu (2\beta  - \alpha )

2(\beta  - \alpha )(s+ \beta  - \alpha )
(s \in \BbbC ),

where \scrL \{ \cdot \} (s) refers to the Laplace transform.2 The detailed steps of this computation
can be found in [29].

Going beyond the first- and second-order statistics, it is also possible to define
statistics of higher orders; see [50, 17]. Although they become less and less intuitive
and tractable as their order increases, [2] makes use of third-order statistics, Kijk, in
a specific application of the generalized method of moments for modeling the impact
matrix of multivariate HPs. It is defined as

Kijkdt =

\int \int 
\tau ,\tau \prime \in \BbbR 2

\Bigl( 
\BbbE (dN i

tdN
j
t+\tau dN

k
t+\tau \prime )(2.13)

 - 2\BbbE (dN i
t )\BbbE (dN

j
t+\tau )\BbbE (dNk

t+\tau \prime ) - \BbbE (dN i
tdN

j
t+\tau )\BbbE (dNk

t+\tau \prime )

 - \BbbE (dN i
tdN

k
t+\tau \prime )\BbbE (dN j

t+\tau ) - \BbbE (dN j
t+\tau dN

k
t+\tau \prime )\BbbE (dN i

t )
\Bigr) 

for 1 \leq i, j, k \leq D, and it is connected to the skewness of Nt.
Now, regardless of the function family chosen for modeling \Phi (\bfitt ) and \bfitmu , its fitness

will be computed by measuring its likelihood over a set of sequences similar to the set
of sequences used for training the model. Let \bfscrS be a set of M sequences, each with a
total number of Nj events, considered over the interval [0, T ], such that

(2.14) \bfscrS = \{ \scrS j\} Mj=1 =
\Bigl\{ \Bigl[ 

(tj1,m
j
0), . . . , (t

j
Nj
,mj

Nj
)
\Bigr] \Bigr\} M

j=1
,

with mk
j \in \{ 1, 2, . . . , D\} \forall j, k \in \BbbZ +.

Let \BbbF be a family of multivariate HPs with dimension D \geq 1 and parametric
exponential kernels assumed for the shape of the excitation functions, such that the
CIF \lambda ji (t) of the ith node defined over the sequence \scrS j is given by3

(2.15) \lambda ji (t) = \mu i +
\sum 
tjk\leq t

\alpha mj
ki
e
 - \beta 

m
j
k
i
(t - tjk) (tjk \in \scrS j).

2The Laplace transform \scrL \{ f\} (s) of a function f(t) defined for t \geq 0 is computed as \scrL \{ f\} (s) =\int \infty 
0 - f(t)e - st for some s \in \BbbC .

3Equivalent definitions of \BbbF can be given to families of HPs defined by other types of HPs, such
as those with power-law kernels, or those with the corresponding CIF modeled by a recurrent neural
network.
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Given parameter vectors

\bfitmu = \{ \mu m\} Dm=1 \in \BbbR D
+ , \theta = \{ (\alpha mn, \beta mn)\} D,D

m=1,n=1 \in \BbbR 2D2

+ ,

the likelihood function given in the logarithmic form, i.e., the loglikelihood, of a
multivariate HP over a set \scrS of M sequences considered over the interval [0, T ], is
given by

(2.16) llh\scrS (\bfitmu , \theta ,\BbbF ) =
M\sum 
j=1

\left(      
D\sum 
i=1

\sum 
k\in Nj

log \lambda ji (t
j
k) - 

D\sum 
i=1

\int T

0

\lambda ji (t)dt\underbrace{}  \underbrace{}  
Compensator

\right)      .

Thus, the goal of modeling an HP over \scrS is the act of finding vectors \bfitmu and \theta such
that

(2.17) (\bfitmu , \theta ) = argmax llh\scrS (\bfitmu , \theta ,\BbbF ).

A more rigorous and complete derivation of (2.17) can be found in [9].
Another concept which is of relevance in some inference methods is that of a

branching structure (\scrB ), which defines the ancestry of each event in a given sequence,
i.e., specifies the probability that the ith event ti was caused by the effect of a pre-
ceding event tj in the CIF (pji for 0 \leq i < n) or by the baseline intensity \mu (p0i). The
probabilities pji and p0i can be given by

(2.18) pji =
\phi (ti  - tj)

\lambda (ti)
(for j \geq 1) and p0i =

\mu 

\lambda (ti)
.

As an example, consider Figure 3, in which event t1, the first of the event series,
causes events t2 and t3; event t2 causes event t5; event t3 causes event t4; and event t5
causes events t6 and t7. The corresponding branching structure \scrB E implied by these
relations among the events has an associated probability given by

(2.19) p(\scrB E) = p01 \ast p12 \ast p13 \ast p25 \ast p34 \ast p56 \ast p67.

2.3. Spatiotemporal HPs. While the original HP formulation solely takes into
account the temporal dependencies among consecutive phenomena, a line of work
[24, 79, 52, 24] has focused on exploring additional spatially dependent self-excitation
effects, which have been shown to be of importance in modeling crime rates, drug
overdoses, and infectious diseases, among others.

The CIF of a spatiotemporal HP with time-invariant background rate is given by

(2.20) \lambda STHP (\dagger , t) = \mu (\dagger )\underbrace{}  \underbrace{}  
baseline intensity

+
\sum 
ti<t

\phi (\dagger  - \dagger i, t - ti)\underbrace{}  \underbrace{}  
self-excitation term

,

where \{ \dagger 1, \dagger 2, . . . , \dagger N\} denotes the history of locations of events and \{ t1, t2, . . . , tN\} 
again denotes the history of timestamps of these events.

For a comprehensive treatment of spatiotemporal self-exciting effects, the reader
may refer to [30].
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2.4. Simulation Algorithms. Regarding the experimental aspect of HPs, syn-
thetic data may be generated through the following methods:

1. Ogata’s Modified Thinning Algorithm [62]: This starts by sampling the
first event at time t0 from the baseline intensity. Then each posterior event
ti is obtained by sampling it from an HPP with intensity fixed as the value
calculated at ti - 1, and then either

\bullet accepting it with probability \lambda (ti)
\lambda \ast (ti - 1)

, where \lambda \ast (ti - 1) is the value of the

intensity at time ti - 1, while \lambda ti is the value calculated through (2.7), or
\bullet rejecting it and proceeding to resample a posterior event candidate.

2. Perfect Simulation [60]: This derives from the fact that the HP may be seen
as a superposition of Poisson processes. It proceeds by sampling events from
the baseline intensity, taken as the initial level, and then sampling levels of
descendant events for each of the events sampled at the previous level. To
each event t0,i sampled from the baseline intensity, we associate an IPP with
intensity defined as \phi (t - t0,i), and then sample its descendant events. Next,
we take each sampled descendant event and associate it with its corresponding
IPP, and so on, until all the levels have been explored over the simulation
horizon [0, T ].

Algorithm 2.1 Ogata's Modified Thinning Algorithm (Univariate Case)

Input \mu , \phi (t), T
Define t = 0
Sample t1 from exponential distribution with rate \mu 
Update t = t+ t1
Define n = 1
while t < T do
\lambda n = \mu +

\sum n
i=1 \phi (t - tn)

Sample tn+1 from exponential distribution with rate \lambda n
\lambda n+1 = \mu +

\sum n
i=1 \phi (t+ tn+1  - tn)

Sample u from uniform distribution over [0, 1]

if
\lambda n+1

\lambda n
< u, then

Update t = t+ tn+1

Update n = n+ 1
end if

end while
return \{ ti\} ni=1

More detailed, step-by-step descriptions of each of these two algorithms are shown
in pseudocode format, in Algorithms 2.1 and 2.2, for the case of univariate HPs. In the
next section, we focus on the HP models that assume simple parametric forms for the
excitation functions, along with their variants, which we will refer to as ``parametric
HPs.""

3. Parametric HPs. In this section, we discuss the HP models that assume sim-
ple parametric forms for the excitation functions. Figure 4 shows some examples of
commonly used functions for parametric HPs. Much recent work concerns increment-
ing these models for dealing with specific aspects of certain domains, such as social
networks [103, 42], audio streaming [84], and medical check-ups [92], among others.
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Algorithm 2.2 Perfect Simulation of Hawkes Processes (Univariate Case)

Input \mu , \phi (t), T
Define j = 0
Simulate HPP with \lambda = \mu over [0, T ] to obtain \{ tij\} 

nj
i=1

while \exists tij (\forall i \leq nj) do
for (i = 1 ; i \leq nj ; i++) do

Simulate IPP with \lambda = \phi (t - tij) over t \in [0, T ] to obtain \{ ti(j+1),k\} 
nij+1

k=1

end for
Update nj+1 =

\sum nj
i=1 n

i
j+1

Update \{ ti(j+1)\} 
nj+1

i=1 =
\bigcup nj+1

i=1 \{ ti(j+1),k\} 
nij+1

k=1

Update j = j + 1
end while
return

\bigcup j
l=0\{ til\} 

nl
i=1 (After sorting)
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Fig. 4 Four examples of parametric HP kernels (\phi (t)). Each of them is used to model a different
type of interaction among events of a given HP.

In the following subsections, we give a broad view of how the parametric models of
HPs are used and improved upon through a series of ideas. We have divided the focus
of recent research on parametric HPs into three different strategies, accompanied by
working examples. The three strategies are as follows:

1. Enhancing and composing simple parametric kernels to adapt the model to
specific modeling situations and datasets.

2. Improving the scalability of parametric HP models for multivariate cases with
many nodes and sequences with many jumps.

3. Improving robustness of training for worst-case scenarios and defective data.
Further examples of each strategy are also briefly mentioned in section 11.

3.1. Enhanced and Composite Triggering Kernels. As a way of modeling the
daily oscillations of the triggering effects on Twitter data, [42] proposes a time-varying
excitation function for HPs. The probability \BbbP of getting a retweet over the time
interval [t, t+ \delta t], with small \delta , is modeled as

(3.1) \BbbP (Retweet in [t, t+ \delta t]) = \lambda (t)\delta t,

in which the time-dependent rate is dependent on previous events as

(3.2) \lambda (t) = p(t)
\sum 
ti<t

di\phi (t - ti),

with p(t) the infectiousness rate, ti the time corresponding to the ith retweet arrival,
and di the number of followers of the ith retweeting individual.
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Furthermore, the memory kernel \phi (s), a probability distribution for the time
intervals between a tweet by the followee and its retweet by the follower, has been
shown to be heavily tailed in a variety of social networks [103]. It is fitted to the
empirical data by the function

\phi (s) =

\left\{   
0 for s < 0,
c0 for 0 \leq s \leq s0,
c0(s/s0)

 - (1+\theta ) for s > s0,

where the parameters c0, s0, and \theta are known.
The model is defined so that the daily cycles of human activity are naturally

translated into cycles of retweet activity. The time dependence of the infectious rate
is, therefore, defined as

(3.3) p(t) = p0

\biggl\{ 
1 - r0 sin

\biggl( 
2\pi 

Tm
(t+ \phi 0)

\biggr) \biggr\} 
\tau m
\sqrt{} 
e - (t - t0).

The parameters p0, r0, \phi 0, and \tau m correspond to the intensity, the relative am-
plitude of the oscillation, its phase, and the characteristic time of popularity decay,
respectively. They are fitted through a least square error (LSE) minimization proce-
dure over the aggregation of retweet events over time bins of length \delta t.

Another improvement over the traditional parametric forms for HPs involves the
addition of a nonlinearity into the expression for the CIF,

(3.4) \lambda HP (t) = g

\Biggl( 
\mu +

\sum 
ti<t

\phi (t - ti)

\Biggr) 
,

in which g(\cdot ) correspond to a so-called link function, e.g., sigmoid:

(3.5) g(x) =
1

1 + e - x
.

The work in [84] proposes a procedure for simultaneously learning g(\cdot ), \mu , and \phi (t) =
\alpha \kappa (t), with \kappa (t) taken as e - t, for assuring convergence of the algorithm.

The procedure is formulated using a moment-matching idea over a piecewise-
constant approximation for g(\cdot ), which leads to the definition of the objective function
as a summation:

(3.6) min
g\in \scrG ,\bfitW 

1

n

n\sum 
i=1

\biggl( 
Ni  - 

\int ti

0

g(w \cdot xt)dt
\biggr) 2

,

with w = (\mu , \alpha )T and xt = (1,
\sum 

ti\in \scrH t
\kappa (t - ti))

T .
The algorithm is run by recursively updating the estimates \^w with the Isotron

algorithm (see [38]), and \^g with a projected gradient descent step.
Theoretical bounds for the approximation error of the method are also given,

along with extensions of the algorithm for general point processes, monotonically
decreasing nonlinearities, low-rank processes, and multidimensional HPs.

Another possible enhancement for modeling the parametric HP is the use of a
composition of Gaussian kernels of different bandwidths, as in [91]. The core idea
is that the maximum nonzero frequency component of the kernel is bounded as the
same value of the intensity function, since that is simply a weighted sum of the basis
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functions. Therefore, for every value of the tolerance \xi , it is possible to find a frequency
value \omega 0 such that

(3.7)

\int \infty 

\omega 0

| \^\lambda (\omega )| d\omega \leqslant \xi .

From this \omega 0, the method then defines the triggering function \phi (t) as a composition of
\~D\phi Gaussian functions, with \~D\phi equally spaced values of bandwidth over the interval
[0, \omega 0].

The estimation of the value of the intensity function, for transforming into the
frequency domain, is done through a kernel density estimation with Gaussian kernels
of bandwidth fixed according to Silverman's rule of thumb,

(3.8) h = 5

\sqrt{} \biggl( 
4\^\sigma 5

3n

\biggr) 
\approx 1.06\^\sigma 

5
\surd 
n
,

where \^\sigma is the standard deviation of the time intervals, and n is the number of events
of a given sequence.

After the Gaussian functions are defined, it remains to estimate the model co-
efficients \Theta , with the impact matrix now an impact tensor A = \{ \alpha ijk\} , through a
convex surrogate loss penalized by parameters related to the sparsity of the matrix,
the temporal sparsity of the kernels, and the pairwise similarity,

(3.9) argmin
\Theta \geqslant 0

 - \scrL \Theta + \gamma \scrS | | A| | 1 + \gamma \scrG | | A| | 1,2 + \gamma \scrP E(A),

where
\bullet | | A| | 1 =

\sum 
i,j,k | \alpha ijk| is the L1-norm of the tensor, which is related to its

temporal sparsity; this causes the excitation functions to go to zero at infinity,
therefore maintaining the stability of the process;

\bullet | | A| | 1,2 =
\sum 

i,j | | \{ \alpha ij1, . . . , \alpha ij \~D\phi 
\} | | 2 is related to the sparsity over the \~D\phi 

basis functions of a given node of the process and enforces the local indepen-
dence of the process;

\bullet E(A) =
\sum 

i

\sum 
i\prime \in \scrC i | | \bfitalpha i  - \bfitalpha i\prime | | 2F + | | \bfitalpha i  - \bfitalpha i\prime | | 2F is a coefficient to enforce the

pairwise similarity of the process, in which \scrC i corresponds to the cluster to
which node i belongs, | | \cdot | | F is the Frobenius norm, \bfitalpha i = \{ \alpha ijk\} for fixed i,
and \bfitalpha i = \{ \alpha ijk\} for fixed j. This means that if i and i\prime are similar types of
events, then their mutual excitation effects should be similar as well;

\bullet \gamma \scrS , \gamma \scrG , and \gamma \scrP are coefficients to be tuned for the model.
The estimation is done through an expectation-maximization procedure close to those
of [59] and [106], which first randomly initializes the impact tensor and the vector of
baseline intensities \bfitmu , and then iterates as follows:

1. Estimate the probability that each event was generated by each of the com-
positional basis kernels, as well as the baseline intensity.

2. Average the probabilities over all events of all training sequences for updating
the coefficients of each basis function and the baseline intensity.

The two steps are repeated until the parameter estimates converge.

3.2. Scalability. Another setting in which a parametric choice of kernels is highly
convenient is the scalability of the inference procedure for high-dimensional networks
and sequences with a large number of events, which occur in several domains, such
as social interaction data, which is simultaneously large (i.e., large numbers of posts),
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high-dimensional (numerous users), and structured (i.e., the users' interactions are
not random but, instead, present some regularities).

One interesting inference method in this direction is the work presented in [44],
which achieves a complexity O(nD), with n the number of events comprising the
process history and D the dimension of the impact matrix of the process.

The method used, entitled scalable low-rank Hawkes processes (SLRHP), takes
advantage of the memoryless property of the exponential and the underlying regu-
larity of large networks connected to social events: The memoryless property (which
means that, in HPs with exponential excitation functions, the effect of all past events
on the intensity value of a given point can be computed just from the time of the last
event before that point) speeds up the intensity computing portion of the inference
procedure iterations, while the underlying regularity of large impact matrices associ-
ated with the social phenomena allows the dynamics of large-dimensional HPs to be
captured by impact matrices of much smaller magnitudes.

The baseline rates and excitation functions of the model are then defined using a
low-rank approximation

\mu i = (t) =

E\sum 
j=1

Pij \~\mu j ,(3.10)

\phi mi(t) =

E\sum 
j,l=1

PijPml
\~\phi lj(t),(3.11)

in which P \in \BbbR D\times E
+ is a projection matrix from the original D-dimensional space to

a low-dimensional space E (E \ll D). This projection can also be seen as a low-rank
approximation of the excitation function matrix \Phi , in which

(3.12) \Phi = P \~\Phi PT .

Since E \ll D, the formulated low-rank approximated inference algorithm SLRHP
manages to do the following:

1. capture a simplified underlying regularity imposed on the inferred intensity
rates' parameters by adopting sparsity-inducing constraints on the model
parameters;

2. lower the number of parameters for both the baseline rates and the excitation
kernels, with the D natural rates and D2 triggering kernels being lowered to r
and E2, respectively. This advantage is diminished slightly by the additional
cost of inferring the (D \times E)-sized projection matrix P.

Another way of dealing with the scalability issues of multivariate HPs, in terms
of both the total number of events in the sequences and the number of nodes, is
through the mean-field treatment, as described in [6]. Compared with the SLRHP
method, which focuses on reducing the dimensionality of the underlying network, the
mean-field treatment focuses on finding closed-form expressions for the approximate
estimations involved in the optimization defined over the network in its full dimen-
sionality. The key step of this method is to consider that the arrival intensity of each
node of the process is in a wide sense stationary, which implies the stability condition
for the excitation matrix, and fluctuates only slightly around its mean value.

This last assumption, called the mean-field hypothesis, posits that if \lambda i(t) corre-
sponds to the intensity of the ith node and \~\Lambda i corresponds to the empirical estimator
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of the first-order statistics of that node,

(3.13) \~\Lambda i =
N i

T

T
,

where N i
T corresponds to the total number of events that have arrived at node i up

to the final time of the simulation horizon [0, T ], then we have that

(3.14)
| \lambda i(t) - \~\Lambda i| 

\~\Lambda i
\ll 1 \forall t \in [0, T ] .

The condition defined by (3.14) is met when (i) | | \phi (t)| | \ll 1, independently of the
shape of \phi (t); (ii) the dimensionality of the multivariate HP is sufficiently high; and
also (iii) \phi (t) changes sufficiently slowly, so that the influence of past events averages
to a near constant value.

From this, we can recover the parameters \theta i from the intensity function \lambda it, and

the intensity function from the first-order statistics \~\Lambda i, as

(3.15) log \lambda it \simeq log \~\Lambda i +
\lambda i(t) - \~\Lambda i

\~\Lambda i
 - (\lambda i(t) - \~\Lambda i)2

2(\~\Lambda i)2

and

(3.16) \lambda i(t) = \mu i +

\int t

0 - 

D\sum 
j=1

\phi ji(t)dN i
t .

The method yields mean-field estimates for the parameters with error that decays
proportionally to the inverse of the final time T of the sequences:

(3.17) \BbbE (\theta i) \approx \theta iMF ,

(3.18) cov(\theta ji, \theta j
\prime i\prime ) \sim 1

T
,

where \theta iMF refers to the mean-field estimator of the parameters.

3.3. Training. Elaborating further on some difficulties involved in inferring para-
metric kernels from real data, an interesting method for truncated sequences is de-
scribed in [92].

In the case of learning HP parameters from real data, one often has to deal with
sequences which are only partially observed, i.e., the time event arrivals are only
available over a finite time window.

This poses a challenge concerning the robustness of the learning algorithms, since
the triggering pattern from unobserved events is not considered: The inference deals
with the error induced by computing intensity values over finite time windows, i.e., by
computing intensity values along simulation horizons [0, T ]; the closed-form equation
would assume that its value at 0 is simply the baseline rate \mu .

From the expression for the CIF,

(3.19) \lambda HP (t) = \mu +
\sum 
ti<t

\phi (t - ti)
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for t \in [0, T ], we have that, taking some value T \prime \in [0, T ], we may split the triggering
effect term into two parts:

(3.20) \lambda HP (t) = \mu +
\sum 
ti<T \prime 

\phi (t - ti) +
\sum 

T \prime \leq ti<T

\phi (t - ti)

for t \in [T \prime , T ].
If we are observing the sequences only over the interval [T \prime , T ], the second term

is implicitly ignored, which may lead to severe degradation of the learning procedure,
especially in the case that the excitation functions decay slowly.

The method proposed handles this issue through a sequence-stitching method.
The trick is to sample ``candidate predecessor events"" and choose the most likely one
from its similarity w.r.t. the observed events. The augmented sequences can then be
used for the actual HP parameters' learning algorithm.

In practice, this means that, given M sequences \scrS m realized over [T \prime , T ], the
method would not learn from the regular MLE formula

(3.21) \theta \ast = argmax
\theta 

llh(\{ \scrS m\} Mm=1, \theta ),

but instead from some expression which takes into account the expected influence of
unobserved predecessor events

(3.22) \theta \ast SDC = argmax
\theta 

\BbbE s \scrH T \prime llh([\scrS ,\scrS m], \theta ),

where \scrH T \prime corresponds to the distribution over all possible sequences of events hap-
pening before time T \prime . In practice, this expectation is computed not over the real
distribution, but over some finite number of (relatively few) samples, such as 5 or 10.
This finite sample approximation converts (3.22) into

(3.23) \theta \ast SDC = argmax
\theta 

\sum 
\scrS \its \itt \iti \itt \itc \ith \in \scrK 

p(\scrS \its \itt \iti \itt \itc \ith )llh(\scrS \its \itt \iti \itt \itc \ith , \theta ),

where p(\scrS \its \itt \iti \itt \itc \ith ) is the probability of the stitched sequence obtained from the concate-
nation of the original observed sequence and one of the sample predecessor candidate
sequences. This probability is obtained by normalizing over similarity values over the
candidate sequences obtained from some similarity function \BbbS (\cdot , \cdot ) of the form

(3.24) \BbbS (\scrS k,\scrS ) =
\psi 
\sqrt{} 

e - | | f(\scrS k) - f(\scrS )| | 2 ,

where f(\cdot ) is some feature of the event sequence, and \psi \in \BbbR + is some scale parameter.
By fixing the excitation pattern matrix \bfitkappa as being composed of exponentials \kappa (t) =
e - \beta t and imposing sparsity constraint | | \bfitalpha | | 1 =

\sum 
i,j | \alpha ij | over the impact matrix, the

equivalent problem,

(3.25) \theta \ast = argmax
\mu \geqslant 0,\bfitalpha \succ 0

\sum 
\scrS \its \itt \iti \itt \itc \ith \in \scrK 

p(\scrS \its \itt \iti \itt \itc \ith )llh(\scrS \its \itt \iti \itt \itc \ith , \theta ) + \gamma | | \bfitalpha | | 1,

is shown to be solved through expectation-maximization updated for both \mu and \bfitalpha .
The method is more suitable for slowly decaying excitation patterns, in which the
influence of the unobserved events is more prominent. In the case of exponentials
with large values for the decay factor \beta , the improvement margins mostly vanish.
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Another interesting improvement in the training procedure of MLE for HP para-
metric functions involves the complementary use of adversarial and discriminative
learning, as in [94]. Although adversarial training has gained ever-increasing rele-
vance in neural network based models in the last few years due to the popularization
of generative adversarial networks (GANs) [25] and their variants, as will be dis-
cussed further in section 5, keeping the assumption of a simple parametric shape for
the excitation function is a way to insert domain-specific knowledge into the inference
procedure.

The key idea of this complementary training is that, while the discriminative
loss, here defined as the mean squared error (MSE) between discretized versions of
predicted and real sequences, tends to direct the parameter updates toward smoother
prediction curves, the adversarial loss tends to push the temporally evenly distributed
sampled sequences toward more realistic-looking curves.

For gradient descent based updates, a discretization of the point process is carried
out to approximate the predictions through a recursive computation of the integral
of the intensity function (the compensator portion of the loglikelihood function) in a
closed-form expression. The parameters of the complementary training are actually
initialized by a purely MLE procedure, which was found to be more insensitive to
initial points. The MLE + GAN training updates then follow. The full procedure
can be summarized by the following steps:

1. Subdivide theM original sequences on [0, T ] into training (on [0, T tn]), valida-
tion (on [T tn, T vd]), and test (on [T vd, T ]) portions, using previously defined
parameters T tn and T vd.

2. Initialize the parameters of the model through the ``purely"" MLE procedure.
3. Sample M sequences from the model over the interval [0, T tn].
4. By choosing a specific parameter shape for the excitation function and binning

both the original and the simulated sequences over equally spaced intervals,
define the closed-form expression for the MSE (discriminative) loss \scrL MSE

over all the sequences and dimensions of the process.
5. Define the GAN (adversarial) loss of the model over the sequences as

\scrL GAN =\left\{         
E\scrS tn \BbbP (\scrS tn) [FW (Y\theta \scrS (\scrS tn))] - E\scrS tn \BbbP (\scrS tn) [FW (Y\theta \scrS (\scrS tn))]

for the critic network FW ,

 - E\scrS tn \BbbP (\scrS tn) [FW (Y\theta \scrS (\scrS tn))]

for the training model (generator),

(3.26)

where \BbbP (\scrS tn) corresponds to the underlying probability distribution that we
assume has generated the original sequences \scrS tn, FW \{ \cdot \} refers to a neural
network that can compute the so-called Wasserstein distance, a metric for
difference among distributions which will be further explained in section 5,
and Y\theta \scrS (\cdot ) corresponds to the parametric model for sequence generation.

6. Compute the joint loss for the MLE and GAN portions as

(3.27) \bfitL MLE+GAN = \gamma GAN\bfitL MLE + (1 - \gamma GAN )\bfitL GAN for \gamma GAN \in [0, 1].

7. Compute gradients of \bfitL MLE+GAN over each parameter of model Y\theta \scrS .
8. Update parameter estimates of the training model with \eta \nabla \theta \scrS (\bfitL MLE+GAN )

for some learning rate \eta .
9. Repeat steps 3 to 8 until convergence.
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The method is an interesting combination of the enriched dynamical modeling from
the adversarial training strategy with the robustness over small training sets of the
parametric-based MLE estimation for HPs.

In this section, we have provided a comprehensive analysis of progress in HP
modeling and inference for excitation functions assumed to be of a simple parametric
shape, along with their compositions and variants. In the next section, we will discuss
advances in nonparametric HP excitation function strategies.

4. Nonparametric HPs. Nonparametric HPs consider that a rigid and simple
parametric assumption for the triggering kernel may not be enough to capture all the
subtleties of the excitation effects that could not be retrieved from the data. They
may be broadly divided into two main approaches:

1. Frequentist.
2. Bayesian.

We will briefly discuss their variants in this section.

4.1. Frequentist Nonparametric HPs. The frequentist approach to HP model-
ing and inference consists in assuming that the excitation function (or matrix) can be
defined as a binned grid (or a set of grids), in which the values of the functions are
taken as piecewise constant inside each bin, and the width of the bin is (hopefully)
expressive enough to model the local variations of the self-excitation effect.

They were first developed in [46], [5], and [8]. In the case of [46], the final values of
the bins were found by solving a discretized ordinary differential equation, implied by
the branching structure of the discretized triggering kernel and background rate over
the data, through iterative methods. The approach in [5] and [8], on the other hand,
recovers the piecewise constant model by exploiting relations, in the frequency domain,
among the triggering kernel, the background rate, and the second-order statistics of
the model, also obtained in a discretized way over the data.

The increased expressiveness of this type of excitation model incurs two main
drawbacks:

\bullet The bin division grid concept is close to that of a histogram over the distance
among events, which usually requires much larger datasets to lead to accurate
predictions, in contrast to parametric models, which behave better on shorter
and fewer sequences but most likely underfit on large sequence sets.

\bullet The time of the inference procedure may also be much larger, since it involves
sequential binning computation procedures which cannot take advantage of
the Markov property of parametric functions such as the exponentials.

Two improvements, to be discussed in this subsection, deal with these exact
drawbacks through

\bullet acceleration of the computations over each sequence and/or over each bin of
the excitation matrix/function;

\bullet reduction of the times of binning computational procedures through a so-
called online update of the bin values.

4.2. Acceleration of Impact Matrix Estimation through Matching of Cumu-
lants. One acceleration strategy is developed in [2], which replaces the task of esti-
mating the excitation functions directly by estimating their cumulative values, i.e.,
their integrated values from zero up to infinity, which is enough to quantify the causal
relationships among the nodes. That is, instead of estimating \phi ij(t) for each node,
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the method estimates a matrix | | \Phi (t)| | = \{ | | \phi ij(t)| | \} , in which

(4.1) | | \phi ij(t)| | =
\int \infty 

0

\phi ij(t)dt \forall (i, j) \in D \times D.

The method, called nonparametric Hawkes process cumulant (NPHC), then proceeds
to compute, from the sequences, moment estimates \^\bfitR up to the third order. It then
finds some estimate

\bigm\| \bigm\| \^\Phi (t)
\bigm\| \bigm\| of this cumulant matrix which minimizes the L2 squared

error between these estimated moments and the actual moments \bfitR (| | \Phi (t)| | ), which
are uniquely determined from | | \Phi (t)| | :

(4.2)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \^\Phi (t)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| = argmin
| | \bfPhi (t)| | 

| | \bfitR (| | \Phi (t)| | ) - \^\bfitR | | 2.

This L2 minimization comes from the fact that, by defining

(4.3) \bfitV =
\Bigl( 
\BbbI D  - 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \^\Phi (t)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Bigr)  - 1

,

one may express the first-, second-, and third-order moments of the process as

(4.4) \Lambda i =

D\sum 
m=1

V im\mu m,

(4.5) \nu ij =

D\sum 
m=1

\Lambda mV imV jm,

Kijk =

D\sum 
m=1

\bigl( 
V imV jm\nu km + V im\nu jmV km

+ \nu imV jmV km  - 2\Lambda mV imV jmV km
\bigr) 
,(4.6)

and thus we may find an estimator \^\bfitV = argmin\bfitV \bfitL NPHC(\bfitV ), with \bfitL NPHC(\bfitV )
defined as

(4.7) \bfitL NPHC(\bfitV ) = (1 - \gamma NPHC)| | \bfitK \bfitc (\bfitV ) - \^\bfitK \bfitc | | 22 + \gamma NPHC | | \bfitnu (\bfitV ) - \^\bfitnu | | 22,

where \gamma NPHC is a weighting parameter, | | \cdot | | 22 is the Frobenius norm, and \bfitK \bfitc =
\{ Kiij\} 1\leq i,j\leq D is a two-dimensional compression of the tensor \bfitK . From this expres-
sion, by setting

(4.8) \gamma NPHC =
| | \^\bfitK \bfitc | | 22

| | \^\bfitK \bfitc | | 22 + | | \^\bfitnu | | 22
,

one may arrive at

(4.9)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \^\Phi (t)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| = \BbbI D  - \^\bfitV 
 - 1
.

The estimates of moments in the algorithm are actually computed through truncated
and discretized (binned) countings along a single realization of the process and, since
the real-data estimates are usually not symmetric, the estimates are averaged along
positive and negative axes.

Also, for D = 1, the estimate
\bigm\| \bigm\| \^\Phi (t)

\bigm\| \bigm\| can be estimated solely from the second-
order statistics. For higher-dimensional processes, it is the skewness of the third-order
moment that uniquely fixes

\bigm\| \bigm\| \^\Phi (t)
\bigm\| \bigm\| .
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4.3. Online Learning. Another improvement of the method consists in updating
the parameters of the discretized estimate of the excitation function through a single
pass over the event sequence, i.e., an online learning procedure [96].

In the case of the referred algorithm, the triggering function is assumed to
1. be positive,

(4.10) \phi (t) \geq 0 \forall t \in \BbbR ;

2. have a decreasing tail, i.e.,

(4.11)

\infty \sum 
k=m

(tk  - tk - 1) sup
x\in (tk - 1,tk]

| f(y)| \leq \zeta f (ti - 1) \forall i > 0

for some bounded and continuous \zeta f : \BbbR + \mapsto \rightarrow \BbbR + such that limt\rightarrow \infty \zeta f (t) = 0;
3. belong to a reproducing kernel Hilbert space (RKHS), which here is used as

a tool for embedding similarity among high-dimensional and complex distri-
butions into lower-dimensional ones.

The method proceeds by taking the usual expression for the loglikelihood function,

llh \~T (\bfitlambda ) =  - 
D\sum 

d=1

\Biggl( \int \~T

0

\lambda d(s)ds - yd,k log \lambda d(tk)

\Biggr) 
,(4.12)

and optimizing instead over a discretized version of it,

(4.13)

llh \~T (\bfitlambda ) =

D\sum 
d=1

M(t)\sum 
k=1

\Biggl( \int \chi k

\chi k - 1

\lambda d(s)ds - yd,k log \lambda i(tk)

\Biggr) 

=

D\sum 
d=1

\Delta Ld,t(\lambda d),

with (t1, . . . , tn(t)) denoting the event arrival times over an interval [0, \~T ] and with a

partitioning \{ 0, \chi 1, . . . , \chi M(t)\} of this interval [0, \~T ] such that

(4.14) \chi k+1 = min
ti\geq \chi k

\{ \iota \ast \lfloor \chi k/\iota \rfloor + \iota , ti\} 

for some small \iota > 0. The discretized version can then be expressed as

(4.15)

llh
(\iota )
\~T
(\bfitlambda ) =

D\sum 
d=1

M(t)\sum 
k=1

\Biggl( \int \chi k

\chi k - 1

(\chi k  - \chi k - 1)\lambda d(\chi k) - yd,k log \lambda i(\chi k)

\Biggr) 

=

D\sum 
d=1

\Delta L
(\iota )

d, \~T
(\lambda d).

The optimization procedure is carried out at each slot of the M(t) partition, taking
into account the following items:

\bullet A truncation over the intensity function effect, i.e.,

(4.16) \phi (t) = 0 \forall t > tmax,

to simplify the optimization of the integral portion of the loss. The error over
this approximation is shown to be bounded by the decreasing tail assumption.
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Table 1 Comparison of the computational complexity of parametric and nonparametric HP esti-
mation methods, extracted from [2]. Iter is the number of iterations of the optimization
procedure, \~D\phi is the number of composing basis kernels of \phi (t), D is the dimensionality of
the multivariate HP, nmax is the maximum number of events per sequence, and M is the
number of components of the discretization applied to \phi (t). Complexities are taken from
[2] and [96].

Method Total complexity

ODE HP [106] \scrO (Iter \ast \~D\phi (n
3
maxD

2 +M \ast (nmaxD + n2
max)))

Granger causality HP[91] \scrO (Iter \ast \~D\phi n
3
maxD

2)
Wiener--Hopf eq. HP [8] \scrO (nmaxD2M +D4M3)

NPHC [2] \scrO (nmaxD2 + Iter \ast D3)
Online learning HP [96] \scrO (Iter \ast D2)

Table 2 Performance comparison of several multivariate HP estimation methods in the Meme-
Tracker [45] dataset, extracted from [2]. The relative error between a ground truth impact
matrix \bfitalpha = \{ \alpha ij\} and its estimate \^\alpha = \{ \^\alpha ij\} is simply

\sum 
i,j | \alpha ij  - \^\alpha ij | /| \alpha ij | \bfone \{ \alpha ij \not =0\} +

| \^\alpha ij | \bfone \{ \alpha ij=0\} . (\bfone \{ \cdot \} is the indicator function.)

Multivariate HP estimation method

Performance metric ODE HP [106] Granger causality HP [91] ADM4 [105] NPHC [2]

Relative error 0.162 0.19 0.092 0.071
Estimation time (s) 2944 2780 2217 38

\bullet A Tikhonov regularization over the coefficients \mu d and \phi d,d, which is simply
the addition of weighted | | \mu d| | 2 and | | \phi d,d| | 2 terms to the loss function, to
keep their resulting values small.

\bullet A projection step for the triggering function optimization part, to keep them
all positive.

The recent improvements over frequentist nonparametric HP estimation focus on two
main strategies:

\bullet Speeding up inference through replacement of the excitation matrix as objec-
tive by the matrix of cumulants, which is shown to be enough to capture the
mutual influence among each pair of nodes.

\bullet An online learning procedure, which uses some assumptions on the kernels
(positive, decreasing tail RKHS) to recover estimates of the HP parameters
over a single pass on some partitioning of the event arrival timeline.

A comparison of the complexity of several parametric and frequentist nonpara-
metric HP estimation methods is shown in Table 1, and performance metrics are
shown in Table 2. In general, it is possible to see the focus of more recent methods,
such as NPHC and the online learning approach, on reducing the complexity per it-
eration of the resulting estimation procedure through approximation assumptions on
the underlying model.

4.4. Bayesian Nonparametric HPs. Another nonparametric treatment of HPs
revolves around the assumption that the triggering kernel and the background rates
can be modeled by distributions (or mixtures of distributions) from the so-called
exponential family, which, through their conjugacy relationships, allow for closed-form
computations of the sequential updates in the model. These were mainly proposed in
[20], [18], and [102].

In [20], HPs are used for modeling the clustering of document streams, captur-
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ing the dynamics of arrival time patterns, used together with textual content-based
clustering.

It seems logical that news and other media-related information sources revolving
around a given occurrence, such as a natural catastrophe, a political action, or a
celebrity scandal, are related not only in terms of word content, but also their time
occurrences, as journalists tend to release more and more content on a topic of high
public interest, but will slow the pace of publication as interest gradually vanishes or
shifts toward other subjects.

The main idea is to unite both Bayesian nonparametric inference, which is a
scalable clustering method that allows for new clusters to be added as the number
of samples grows, and HPs. The corresponding Bayesian nonparametric model, the
Dirichlet process, captures the diversity of event types, while the HPs capture the
temporal dynamics of the event streams.

A Dirichlet process DP (\alpha ,G0) can be roughly described as a probability dis-
tribution over probability distributions. It is defined by a concentration parameter
\alpha , proportional to the level of discretization (``number of bins"") of the underlying
sampled distribution, and a base distribution G0, which is the distribution to be
discretized. As an example, for \alpha equal to 0, the distribution is concentrated at a
single value, while, in the limit as \alpha goes to infinity, the sampled distribution becomes
continuous.

The corresponding hybrid model, the Dirichlet--Hawkes process (DHP), is defined
by

\bullet \mu , an intensity parameter;
\bullet \BbbP DHP

0 (\theta DHP ), a base distribution over a given parameter space \theta DHP \in 
\Theta DHP ;

\bullet a collection of excitation functions \phi \theta DHP (t, t
\prime ).

After an initial time event t1 and an excitation function parameter \theta 1DHP are
sampled from these base parameters \mu and \BbbP DHP

0 (\theta DHP ), respectively, the DHP is
then allowed to alternate between the following methods:

1. Sampling new arrival events ti from the current value of \theta DHP for the exci-
tation function, with probability

(4.17)
\mu 

\mu +
\sum n - 1

i=1 \phi \theta iDHP (tn, ti)
.

2. Sampling a new value for \theta DHP with probability

(4.18)

\sum n - 1
i=1 \phi \theta iDHP (tn, ti)

\mu +
\sum n - 1

i=1 \phi \theta iDHP (tn, ti)
.

In this way, we are dealing with a superposition of HPs in which the arrival events
tend toward processes with higher intensities, i.e., the preferential attachment, but
which also allows for diversity, since there is always a nonzero probability of sampling
a new HP from the baseline intensity \mu .

By defining the excitation functions \phi \theta as a summation of parametric kernels

(4.19) \phi \theta DHP (ti, tj) =

K\sum 
l=1

\alpha l
\theta DHP \kappa 

l
DHP (ti  - tj),

the model can be made even more general.
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The approach in [18], besides the random histogram assumption for the triggering
kernel, similar to the frequentist case, also considers the case of the kernel being
defined by a mixture of beta distributions, with the model being updated through a
sampling procedure (Markov chain Monte Carlo).

The work in [102] proposes a Gamma distribution over the possible values of \mu 
with the triggering kernel modeled as

(4.20) \phi (\cdot ) = \scrG \scrP (\cdot )2

2
,

where \scrG \scrP (\cdot ) is a Gaussian process [66].
These assumptions allow for closed-form updates over the posterior distributions

over the background rate and the triggering kernel, which are claimed to be more
scalable and efficient than the plain binning of the events.

In the next section, we will explore neural architectures, which were introduced
for the modeling and generation of HPs through a more flexible representation of the
effect of past events on the intensity function.

5. Neural Network Based HPs. In this section, we discuss the neural network
based formulations of HP modeling. The main idea is to capture the influence of past
events on the intensity function in a nonlinear, and thus hopefully more flexible, way.

This modeling approach makes use of recurrent models, which, in their simplest
formulation, encode sequences of states

(5.1) (zs0, z
s
1, . . . , z

s
N )

and outputs

(5.2) (zo0 , z
o
1 , . . . , z

o
N ),

in a way such that each state zsi+1 can be obtained by a composition of the immediately
preceding state zsi and a so-called hidden state hi that captures the effect of the other
past states,

(5.3) hi = \sigma h(Wsz
s
i +Whhi - 1 + bh),

(5.4) zoi = \sigma o(Woz
o
i + bo),

in which Wo, Ws, Wh, bh, and bo are parameters to be fitted by the optimization
procedure, while \sigma h and \sigma o are nonlinearities such as a sigmoid or a hyperbolic tangent
function.

In the case of HPs, the state to be modeled is the intensity function along a
sequence of time event arrivals, and an additional assumption is that its intensity
value decays exponentially between consecutive events.

In the case of most neural network based models, the inference also counts with a
mark distribution for the case of marked HPs, in which a multinomial or some other
multiclass distribution is fitted together with the recurrent intensity model.

Arguably the first such type of model, the recurrent marked temporal point pro-
cess (RMTPP) [19], jointly models marked event data using a recurrent neural network
(RNN) with exponentiated output for modeling the intensity.
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For sequences of the type \{ ti, yi\} Ni=1, in which ti corresponds to the time of the
ith event arrival, while zoi refers to the type of event or mark, we have a hidden cell
hi described by

(5.5) \bfith \bfiti = max
\bigl\{ 
Woz

o
i +W tti +Whhi - 1 + bh, 0

\bigr\} 
and a CIF defined as a function of this hidden state,

(5.6) \lambda (t) = exp
\bigl( 
\bfitv \bfitt \bfith \bfiti + wt(t - ti) + bt

\bigr) 
,

while a K-sized mark set can have its probability modeled by a Softmax distribution:

(5.7) P (zoi+1 = k| \bfith \bfiti ) = Softmax (k,\bfitV \bfitz \bfito 
\bfitk \bfith \bfiti + bzok ) =

exp
\bigl( 
\bfitV \bfitz \bfito 
\bfitk \bfith \bfiti + bzok

\bigr) \sum K
k=1 exp

\bigl( 
\bfitV \bfitz \bfito 
\bfitk \bfith \bfiti + bzok

\bigr) .
The likelihood of the whole sequence can then be defined as a product of conditional
probability density functions for each event,

(5.8) llh
\bigl( 
\{ ti, zoi \} Ni=1

\bigr) 
=

N\prod 
i=1

f(ti, z
o
i ),

with

f\lambda (t) = \lambda (t) exp

\biggl( 
 - 
\int t

tn

\lambda (t)dt

\biggr) 
,(5.9)

where tn is the latest event that occurred before time t. From this f(t), we may
estimate the time of the next event as

(5.10) ti+1 =

\int \infty 

ti

tf\lambda (t)dt.

This allows us to optimize the parameters of the RNN model over the loss equal to
this likelihood function, composed by these conditional density functions.

Given a set of M training sequences \scrS j = \{ tji , y
j
i \} N

j

i=1, we want to optimize the
weight parameters over a loss function defined as

(5.11) llh(
\bigl\{ 
\scrS j
\bigr\} M
j=1

) =

M\sum 
j

Nj\sum 
i

log
\Bigl( 
P (zo,ji+1| \bfith \bfiti ) + log f\lambda (t

j
i+1  - tji | \bfith \bfiti )

\Bigr) 
.

This optimization procedure is usually done through the backpropagation through
time (BPTT) algorithm, which proceeds by ``unrolling"" the RNN cells for a fixed
number of steps, then calculating the cumulative loss along all these steps together
with the gradients over each of the W 's, w's, v's, and b's, then updating these param-
eters with a predefined learning rate until convergence.

One improvement on the RNN-based modeling approach is described in [88],
referred to as ``time series event sequence"" (TSES), which consists of treating the
mark sequences as being derived from another RNN model, instead of the multinomial
distribution. This RNN for the marks is then jointly trained with the RNN for event
arrival times.

Another improvement over this neural network based modeling approach is the
neural HP [56], which uses a variant of the basic RNN, called long short-term memory
(LSTM) [33], applied to the intensity function modeling.

D
ow

nl
oa

de
d 

12
/1

9/
24

 to
 1

86
.2

09
.3

3.
21

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

354 RAFAEL LIMA

The neural HP models the intensity function of a multitype event sequence by
associating each kth event type with a corresponding intensity function \lambda k(t), such
that

(5.12) \lambda k(t) = fk(w
T
k \bfitz 

\bfith (t)),

with

(5.13) \bfitz \bfith (t) = \bfito \bfiti \odot (2g(2\bfitc (t) - 1)).

The variables \bfito \bfiti and \bfitc (t) are defined through the following update rules:

(5.14) \bfitc \bfiti +\bfone = fi+1 \odot \bfitc (ti) + \bfiti i+1 \odot \bfitz i+1.

The variables \bfiti i+1, \bfitf i+1, \bfitz i+1, and \bfito i+1 are defined similarly to the gated variables
of a standard LSTM cell; see the original paper for their full definitions. The value of
the \bfitc (t) is assumed to decay exponentially among consecutive events as

\bfitc (t) = \bfitc \bfiti +\bfone + (\bfitc i+1  - \bfitc \bfiti +\bfone ) exp( - \bfitdelta i+1(t - ti))(5.15)

for

(5.16) \bfitc \bfiti +\bfone = f i+1 \odot \bfitc (ti) + \bfiti i+1 \odot \bfitz i+1,

(5.17) \bfitdelta i+1 = g(\bfitW \bfitdelta \bfitk \bfiti +\bfitU \bfitdelta \bfith (ti) + \bfitd \bfitdelta ).

The W 's, U 's, and d's of the model are trained so as to maximize the loglikelihood
over a set of sequences. Compared with the previous RNN-based model, in the neural
HP the following hold:

1. The baseline intensity \mu k is not implicitly considered constant, but instead is
allowed to vary.

2. The variations of the cell intensity are not necessarily monotonic, because the
influences of each event type on the cell values may decay at a different rate.

3. The sigmoid functions along the composition equations allow for an enriched
behavior of the intensity values.

All these features contribute to an increased expressiveness of the model. Besides, as
in the regular LSTM models, the ``forget"" gates \bfitf i+1 are trained so as to control how
much influence the past values of \bfitc (t) will have on its present value, thus allowing the
model to possess a ``long-term"" memory.

Another variant of the RNN-based HPs, introduced in [89], models the baseline
rate and the history influence as separate RNNs. The baseline rate is taken as a time
series, with its corresponding RNN updating its state at equally spaced intervals, such
as five days. The RNN modeling the influence of the history of past events in future
ones updates its state at each event arrival. This has been shown to increase the time
and mark prediction performance, as demonstrated in Table 3.

Both the background rate time series \{ \mu (t)\} Tt=1 and the marked event sequence
\{ mi, ti\} Ni=1 are modeled by LSTM cells:

(5.18) (\bfith \mu (t), \bfitz \mu 
c (t)) = LSTM\mu (\bfitmu (t),\bfith 

\mu (t - 1) + \bfitz \mu 
c (t - 1)),

(5.19) (\bfith m(i), \bfitz m
c (i)) = LSTMm(\bfitm i,\bfith 

m(i) + \bfitz m
c (i - 1)).
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The \bfith and c states correspond to the hidden state and the long-term dependency
terms, respectively, similarly to the neural HP. Both terms are concatenated in a
single variable \bfitz e(t) for jointly training both RNN models:

(5.20) \bfitz e(t) = tanh(\bfitW f [\bfith 
\mu (t),\bfith m] + \bfitb f ),

(5.21) \bfitU (t) = Softmax (\bfitW U\bfitz e(t) + \bfitb U ),

(5.22) \bfitu (t) = Softmax (\bfitW u [\bfitz e(t),\bfitU (t)] + \bfitb u),

(5.23) zs = \bfitW s\bfitz e(t) + bs,

with U and u denoting the main event types and subtypes, respectively, and zs denot-
ing the composed timestamp of each event. The loss over which the model is trained
is defined in a cross-entropy way as

N\sum 
j=1

\Bigl( 
 - \bfitW U (j) log(U(t, j)) - wu(j) log(u(t, j))(5.24)

 - log (f(zs(t, j)| h(t - 1, j)))
\Bigr) 
,

with

(5.25) f (zs(t, j)| h(t - 1, j)) =
1\surd 
2\pi \sigma 

e

\left(   - 
(zs(t, j) - z\~s(t, j))

2

2\sigma 2

\right)  
,

where z\~s(t, j) is the model predicted output for the corresponding event zs(t, j).
The model weights are then jointly trained, over the total loss function and under

some correction for the frequency ratio of each event type, for both the background
rate time series values and the event arrivals RNN, and are shown to outperform more
``rigid"" models.

Now, for the generation of HP sequences, both RMTPP and neural HPs have in
common the fact that they intend to model the intensity function of the underlying
process, so that new sequences may be sampled in a way that reproduces the behavior
of the original dataset. This intensity modeling, however, has three main drawbacks:

1. It may be unnecessary, since the sequences may be simply produced by un-
rolling cells of corresponding RNN models.

2. The sequences from these intensity-modeling approaches are sampled using
a ``thinning algorithm"" [62], which may result in slowed-down simulations in
the case of repeatedly rejected event intervals.

3. These methods are trained by maximizing the loglikelihood over the train-
ing sequences, which is asymptotically equivalent to minimizing the KL-
divergence over original and model distributions. This MLE approach is not
robust in the case of multimodal distributions.

The model in [86] proposes approximating a generative model for generating event
sequences by using an alternative metric of difference among distributions, the Wasser-
stein (or earth-moving) distance, discussed in section 3.
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Fig. 5 Intuition behind the distance metric | \cdot | \ast between two given event sequences \{ ti\} and \{ \tau i\} .
Based on a diagram in [86].

In the model, called Wasserstein generative adversarial temporal point process
(WGANTPP), this Wasserstein loss is shown to be equal to

L
\prime 
=

\Biggl[ 
1

m

m\sum 
i=1

Fw(G\Theta (\scrS i
s)) - 

1

m

m\sum 
i=1

Fw(\scrS i
r)

\Biggr] 
(5.26)

+ \nu 

m\sum 
i,j=1

| fw(\scrS i
r) - Fw(G\Theta (\scrS j

r ))| 
| \scrS i

r  - G\Theta (\scrS j
s )| \ast 

,(5.27)

where the second term, along with the constant \nu , corresponds to the so-called Lip-
schitz constraints, related to the continuity of the models.

\{ \scrS i
r\} mi=1 are real-data sequences, while \{ \scrS i

s\} ni=1 are sequences sampled from an
HPP with a rate \lambda HPP which is simply the expected arrival rate over all training
sequences. The generator network G\Theta and discriminator Fw are defined as

(5.28) G\Theta (\scrS r) = \~\scrS = \{ t1, . . . , tn\} ,

with

(5.29) t(i) = gxG(f
x
G(h(i))) and h(i) = ghG(f

h
G(zs, h(i - 1))),

(5.30) Fw( \~\scrS ) =
n\sum 

i=1

a(i),

and with

(5.31) a(i) = gaD(faD(h(i))) and h(i) = ghD(fhD(ti, h(i - 1))),

with the g's defined as nonlinearities and \~\scrS as some example time event sequence. The
f 's are linear transformations, as in a standard RNN cell, with their corresponding
weight matrices and bias vectors to be tuned using a stochastic gradient descent
procedure.

The distance metric | \cdot | \ast of two sequences \{ ti\} and \{ \tau i\} , for the case of purely
temporal point processes in [0, T ), can be shown to be equivalent to

(5.32)

n\sum 
i=1

| ti  - \tau i| + (m - n)\times T  - 
m\sum 

i=n+1

\tau i,

which has an intuitive graphical interpretation, as shown in Figure 5.
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As previously discussed, the generator is trained so as to ``fool"" the discriminator,
while the discriminator is trained so as to distinguish generated sequences from those
of real data. This adversarial training procedure is roughly equivalent to gradient
updates with opposite signs over their respective parameters: positive sign for the
discriminator and negative sign for the generator.

At the end of the training procedure, one hopefully produces a generator net-
work capable of producing sequences virtually indistinguishable from the real-data
sequences.

This method, however, consists of training a network for generating entire se-
quences, and so the generator model learned may not accurately generate conditional
output sequences from input sequences. Another model, described in [87], deals with
this task by generating, from partially observed sequences, the future events of those
sequences conditioned on their history, i.e., instead of aiming to capture the under-
lying distribution of a set of full sequences, the model performs a ``sample agnostic""
in-sample prediction.

Analogously to one of the parametric models described in section 3, the learning
procedure of this in-sample neural network based prediction model takes advantage
of both types of divergence measures: MLE loss (or KL-divergence) and Wasserstein
distance.

The former aims for a rigid and unbiased parameter matching between two given
probabilistic distributions, which is sensitive to noisy samples and outliers, while
the latter has biased parameter updates but is sensitive to underlying geometrical
discrepancies among sample distributions. This combined loss is a way to balance
both sets of priorities. In the case of long-term predictions, in which initial prediction
errors propagate and magnify themselves throughout the whole stream, this joint loss
was found to strengthen the effectiveness of the inference procedure.

The proposed model borrows from the seq2seq architecture [77] and aims to model
endings of individual sequences conditioned on their partially observed history of ini-
tial events, inserting an adversarial component in the training to increase the accuracy
of long-term predictions. A network, designated as generator, encodes a compact rep-
resentation of the initial partial observation of the sequence and outputs a decoded
remainder of this same sequence. That is, for a full sequence,

(5.33) \{ t1, t2, . . . , tn+m\} ,

the seq2seq modeling approach learns a mapping

(5.34) G\Theta (\scrS 1,n) = \scrS m,n

such that

(5.35) \scrS 1,n = \{ t1, t2, . . . , tn\} and \scrS m,n = \{ tn+1, tn+2, . . . , tn+m\} .

This mapping is defined through a composition of RNN cells,

(5.36) \bfith i = \eta hg (f
h
A(ti,\bfith i - 1) and ti+1 = \eta xg f

x
g (\bfith i),

with the \eta 's defined as nonlinear activation functions and the f 's as linear transfor-
mations with trainable weight matrices and bias vectors.

The learning procedure consists of tuning the RNN cells' parameters to maximize
the conditional probability

(5.37) P (\scrS m,n| \scrS 1,n) =

n+m - 1\prod 
i=n

P (ti+1| hi, t1, . . . , ti),
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which is carried out by parameter gradient updates over the combined Wasserstein and
MLE losses. The adversarial component of the training, the discriminator FS2S

w (\cdot ), is
modeled as a residual convolutional network (see [31]) with a 1-Lipschitz constraint,
which is related to the magnitude of the gradients of the discriminative model. The
full optimization problem then becomes

min
\theta 

max
w

M\sum 
l=1

FS2S
w (\{ \scrS 1,n

l ,\scrS m,n
l \} ) - 

M\sum 
l=1

FS2S
w (\{ \scrS 1,n

l , G\Theta (\scrS 1,n
l )\} )\underbrace{}  \underbrace{}  

Wasserstein loss

(5.38)

 - \gamma LIP

\bigm| \bigm| \bigm| \bigm| \partial FS2S
w\prime (\^x)

\partial \^x
 - 1

\bigm| \bigm| \bigm| \bigm| \underbrace{}  \underbrace{}  
1-Lipschitz constraint

 - \gamma MLE log(\BbbP \theta (\scrS m,n| \scrS 1,n))\underbrace{}  \underbrace{}  
MLE loss

.(5.39)

Further works on RNN-based modeling of HPs can be found in [64] and [37].

5.1. Self-Attentive and Transformer Models. Another improvement for neural
network based modeling, proposed in [100], involves a so-called self-attention strategy
[81] to improve the accuracy of the resulting network. The ith event tuple (ti,mi) is
embedded as a variable xi,

(5.40) \bfitz \bfiti = \bfitt \bfitp \bfitm + \bfitp \bfite (\bfitm \bfiti ,\bfitt \bfiti ),

which simultaneously encodes information about the event mark through

(5.41) \bfitt \bfitp \bfitm = \bfitz \bfitm 
\bfite \BbbW E ,

with \bfitz \bfitm 
\bfite a one-hot encoding vector of the mark and \BbbW E an embedding matrix, and

information about the time interval among consecutive events through a sinusoidal-
based positional encoding vector \bfitp \bfite (\bfitm \bfiti ,\bfitt \bfiti ), with its kth entry defined as

(5.42) pek(mi,ti)
= sin(\omega i

k \times i+ \omega t
k \times ti).

From this encoded variable \bfitx \bfiti , a hidden state \bfith \bfitu ,\bfiti is then defined for each category
u of the marks, which captures the influence of all previous events:

(5.43) \bfith \bfitu ,\bfiti +\bfone =

\Bigl( \sum i
j=1 f(\bfitz \bfiti +\bfone , \bfitz \bfitj )\bfitg (\bfitz \bfitj )

\Bigr) 
\sum i

j=1 f(\bfitz \bfiti +\bfone , \bfitz \bfitj )
.

Through a series of nonlinear transformations, the intensity \lambda u(t) for the uth mark
is then computed. A concurrently developed approach in [107] uses multiple attention
layers to build a so-called transformer HP, which also surpasses the performance of
RNN-based approaches in a series of datasets, as shown in Table 3.

5.2. Graph Convolutional Networks. A further improvement of neural HP mod-
els, described in [73], involves the graph properties of multivariate HPs, which may
be embedded in a neural network modeling framework through the recently proposed
graph convolutional networks (GCNs) [41].

The method is composed of a GCN module for capturing meaningful correla-
tion patterns in a large set of event sequences, followed by a usual RNN module for
modeling the temporal dynamics. In short, the time sequences are modeled as HPs,
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Table 3 Performance comparison of neural network based HP models: (a) loglikelihood averaged
per number of events; (b) RMSE of predicted time interval; and (c) accuracy of mark pre-
diction. The performance was measured over sequences from Retweet [103], MemeTracker
[45], Financial [19], Medical Records [36], and Stack Overflow [45] datasets. The TSES
method is a likelihood-free model, and so its entries are not evaluated for the Loglikelihood
per Event section of the table. Values are obtained from [107].

(a) Loglikelihood per event (b) Time prediction RMSE (c) Mark prediction accuracy

Method \setminus Dataset RT MT FIN MIMIC-II SO FIN MIMIC-II SO FIN MIMIC-II SO

RMTPP [19] -5.99 -6.04 -3.89 -1.35 -2.60 1.56 6.12 9.78 61.95 81.2 45.9
Neural HP [56] -5.60 -6.23 -3.60 -1.38 -2.55 1.56 6.13 9.83 62.20 83.2 46.3

TSES [89] - - - - - 1.50 4.70 8.00 62.17 83.0 46.2
Self-attentive HP [100] -4.56 - - -0.52 -1.86 - 3.89 5.57 - - -
Transformer HP [107] -2.04 0.68 -1.11 0.82 0.04 0.93 0.82 4.99 62.64 85.3 47.0

and the adjacencies among different processes are encoded as a graph. The novel
(GCN+RNN) model is meant to extract significant local patterns from the graph.
The output of the initial GCN network module, which is simply a matrix of the form
\bfitchi = [\bfitmu ,\BbbA ] that includes the baseline vector \bfitmu and the adjacency matrix \BbbA , is fed into
the RNN-based module, there taken as an LSTM. Then the output of this RNN mod-
ule is input into a further module, a fully connected layer, for calculating the changes
d\BbbX to be applied to the current parameter matrix \BbbX . Then, after each training step
T, the predicted value of this parameter matrix becomes

\BbbX (T ) = \BbbX (T  - 1) + d\BbbX (T  - 1).

The work in [95] proposes a model for check-in time prediction composed of an
LSTM-based module in which the feature vector is designed to capture each relevant
aspect of the problem: the event time coordinate ti, an additional field to indicate
whether the check-in occurred on a weekday or during the weekend, the Euclidean
distance between a given check-in location and the location (l) of the previous check-
in, the location type of the check-in (e.g., hotel, restaurant, etc.), the number of users
overlapping with a given location, and the check-ins by friends of the user. This
aggregates social, geographical, and temporal information in a single neural network
based HP-like predictive model.

All these variants of neural network point process models allow for more flexible
(nonlinear) representation of the effect of past events on future ones, besides putting
at the inference procedure's disposal a myriad of deep learning tools and techniques
which have enjoyed a surge in popularity over recent years.

6. Further Approaches. In this section, we briefly review some recently pro-
posed approaches which do not fit conveniently into any of the three previously dis-
cussed subgroups, but may be considered as bridges between the usual HP-related
tasks and other mathematical subfields.

6.1. Sparse Gaussian Processes. By building on the modeling in [102], which
considers the triggering function of the HP as a Gaussian process, the work in [101]
proposes an approach involving sparse Gaussian processes for optimizing over a dataset.
In this, the optimization of the likelihood is taken not over the samples, but over a
set of much fewer so-called inducing points, which are also taken as latent variables,
in order to result in a final model which is both expressive enough to capture the
complexity of the dataset but also tractable enough to be useful and applicable to
reasonably sized datasets.
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6.2. Stochastic Differential Equation. Another way of modeling HPs is through
a stochastic differential equation, as proposed in [43], in which the decay of the trigger-
ing kernel is taken as exponential, but its amplitude is defined as a stochastic process,
taken as being either a geometric Brownian motion or an exponentiated version of
the Langevin dynamics.

6.3. Graph Properties. Besides some previously discussed works which deal with
the properties of the excitation matrices of multivariate HPs as terms to be opti-
mized jointly with other parameters, such as the graph convolutional approaches and
the sparsity inducing penalization terms of some parametric and nonparametric ap-
proaches, there have been several other optimization strategies taking into account
other properties of these matrices.

The work [49] explicitly inserts considerations of the excitation matrix as a dis-
tribution over some types of randomly generated matrices into the optimization of
the HP likelihood. [51] introduces a penalization term involving the proximity of the
excitation matrix to a so-called connection matrix, defined to capture the underlying
connectivity among the nodes of the multivariate HP, to the parameter optimiza-
tion strategy. [53] introduces a weighted sum of the Wasserstein discrepancy and the
so-called Gromov--Wasserstein discrepancy as a penalizing factor on the usual MLE
procedure of HP estimation, with the intention of inducing both absolute and rela-
tional aspects among the nodes of the HP. [4] introduces, besides the sparsity inducing
term, another term related to the resulting rank of the excitation matrix that is de-
signed to induce resulting matrices composed of both few nonzero entries and also
few independent rows.

6.4. Epidemic HPs. The work in [70] blends the HP excitation effect with tradi-
tional epidemic models over populations. By considering a time event as an infection,
it models the diffusion of a disease by introducing an HP intensity function which is
modulated by the size of the available population,

(6.1) \lambda (t) =

\biggl( 
1 - Nt

\~N

\biggr) \Biggl\{ 
\mu +

\sum 
ti<t

\phi (t - ti)

\Biggr\} 
,

where Nt denotes the counting process associated with the HP, while \~N is the total
finite population size.

6.5. Popularity Prediction. The work in [58] proposes the use of HP modeling
blended with other machine learning techniques, such as random forests, to obtain
an associated so-called popularity measure, which is defined as the total number of
events the underlying process is expected to generate as t \rightarrow \infty . This measure is
treated as an outcome derived from features associated with some entity (e.g., social
network user), such as number of friends, total number of posted statuses, and the
account creation time.

In the next section, we will discuss models in which one not only wants to capture
the temporal dynamics, but also wishes to influence it toward a certain goal, implicitly
defined through a so-called reward function.

7. Stochastic Control and Reinforcement Learning of HPs. In this section,
we briefly review some control strategies regarding HPs. In some cases, one may wish
not only to be able to model the traces of some event sequences, or to capture the
underlying distribution of said sequences, but also to try to influence their temporal
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dynamics toward more advantageous ones. These cases are considered in work on
stochastic control and reinforcement learning approaches for HPs.

This concept of advantageous dynamics is explained through the definition of
a so-called reward function, which is defined in terms of specific, and sometimes
application-specific, properties of the sequences. Most works related to the subject
deal with social network applications, and one example of reward is the total time
the post of a user stays at the top of the feeds of his/her followers. One type of
reward which is not domain-specific is the dissimilarity among two sets of sequences,
computed through mappings such as ``kernel mean embeddings"" [61]. In the case of
imitation learning approaches, one still focuses on modeling only the HP, without
steering it toward desirable behaviors. In these approaches, the reward function is
simply defined by how well the samples of the model chosen to be adjusted approxi-
mate the samples of the original HP.

7.1. Stochastic Optimal Control (SOC). One example of this control approach
is described in [99], in which the variable to be controlled is the time to post of a
given user, implicitly defined as an intensity function, so as to maximize the reward
function \bfitr (t), here computed as the total time that this user's posts stay at the top
of the feeds of his/her followers.

This ``when-to-post"" problem can be formulated as

min
u(t0,tf )

\BbbE (Ni,M{\i})(t0,tf ]

\biggl[ 
\Omega (\bfitr (tf )) +

\int tf

t0

\bfitL (\bfitr (\tau ), u(\tau ))d\tau 

\biggr] 
(7.1) subject to u(t) \geq 0 \forall t \in (t0, tf ],

where
\bullet i is the index of the broadcaster of the posts;
\bullet Ni(t) is the counting process of the ith broadcaster, with \bfitN (t) = \{ Ni(t)\} ni=1

being an array of counting processes along all the n users of the network;
\bullet \BbbA \in \{ 0, 1\} n\times n is the adjacency matrix of the network;
\bullet \bfitM {\i}(t) = \BbbA T\bfitN (t) - \BbbA iNi(t), which means that M{\i}(t) is the sum of the count-

ing processes of all users connected to user i, excluding user i him/herself;
\bullet t0 and tf are, respectively, the starting and ending times of the problem
horizon taken into consideration;

\bullet u(t) = \mu i(t), the controlled variable, is the baseline intensity of user i, to be
steered toward the maximization of the reward function;

\bullet \Omega (\bfitr (tf )) is an arbitrarily defined penalty function;
\bullet \bfitL (\bfitr (\tau ), u(\tau )) is a nondecreasing convex loss function defined w.r.t. the visi-
bility of the broadcaster's posts in each of his/her followers' feeds.

The approach used in the problem is to define an optimal cost-to-go J(\bfitr (tf ), \lambda (t), t),

J(\bfitr (tf ), \lambda (t), t) = min
u(t,tf ]

\BbbE (N,M)(t,tf ]

\biggl[ 
\phi (\bfitr (tf )) +

\int tf

t

\bfitl (\bfitr (\tau ), u(\tau ))d\tau 

\biggr] 
,(7.2)

and find the optimal solution through Bellman's principle of optimality:

J(\bfitr (t), \lambda (t), t) = min
u(t,t+dt]

\{ \BbbE [J(\bfitr (t+ dt), \lambda (t+ dt), t+ dt)] + \bfitl (\bfitr (t), u(t))dt\} .

For example, in the case of a broadcaster with one follower (\bfitr (t) = r(t)), if the penalty
and loss functions are defined as

(7.3) \phi (r(tf )) =
1

2
r2(tf )
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and

(7.4) \bfitL (r(t), u(t)) =
1

2
s(t)r2(t) +

1

2
qu2(t)

for some positive significance function s(t) and some trade-off parameter q, which
calibrates the importance of both visibility and number of posts, we set the derivative
of J(r(t), \lambda (t), t) over u(t) to 0 and solve it to obtain the analytical solution

(7.5) u\ast (t) = q - 1[J(r(t), \lambda (t), t) - J(0, \lambda (t), t)],

which is thus the optimal intensity a broadcaster must adopt to maximize visibility,
constrained on the cost associated to the number of posts, along this follower's feed.
Further derivations are provided for the more natural and general case, in which the
broadcaster may have multiple followers.

An earlier version of this type of SOC-based approach to influencing activity
in social networks can be found in [98], in which the goal is to maximize the total
number of actions (or events) in the network. Analogously to the previously discussed
algorithm, one may solve the continuous time version of the Bellman equation by
defining an optimal cost-to-go J(\bfitlambda (t), t), which here depends only on the intensities
of the nodes and the time.

The control input vector \bfitu (t) acts on the network by increasing the original vector
of uncontrolled intensities

(7.6) \bfitlambda (t) = \bfitmu 0 + \BbbA 
\int t

0

\kappa (t - s)d\bfitN (s),

with the equivalent rates of an underlying counting process vector d\bfitM (s), such that
the new controlled intensity vector \bfitlambda \ast (t) is now described by

(7.7) \bfitlambda \ast (t) = \bfitmu 0 + \BbbA 
\int t

0

\kappa (t - s)d\bfitN (s) + \BbbA 
\int t

0

\kappa (t - s)d\bfitM (s),

where \kappa (t) = e - \beta t in the model.
Then, in the same way, by differentiating the equivalent J(\bfitlambda (t), t) over the control

input, setting the corresponding expression to 0, and then defining

(7.8) \bfitL (\bfitlambda (t),\bfitu (t)) =  - 1

2
\bfitlambda T (t)\bfitQ \bfitlambda (t) +

1

2
\bfitu T (t)\bfitS \bfitu (t)

and

(7.9) \Omega (\bfitlambda (tf )) =  - 1

2
\bfitlambda T (tf )\bfitF \bfitlambda (tf ),

with previously defined symmetric weighting matrices \bfitQ , \bfitF , and \bfitS , we arrive at a
closed-form expression for the optimal control intensity value,

(7.10) \bfitu \ast (t) =  - \bfitS  - 1

\biggl[ 
\BbbA T\bfitg (t) + \BbbA T\bfitH (t)\bfitlambda (t) +

1

2
diag(\BbbA T\bfitH (t)\BbbA )

\biggr] 
.

\bfitH (t) and \bfitg (t) can be computed by solving the differential equations

(7.11) \.\bfitH (t) = (\beta \bfitI  - \BbbA )T\bfitH (t) +\bfitH (\beta \bfitI  - \BbbA ) +\bfitH (t)\BbbA \bfitS  - 1\BbbA T\bfitH (t)\bfitQ ,
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\.\bfitg (t) =
\bigl[ 
\beta \bfitI  - \BbbA T +\bfitH (t)\BbbA \bfitS  - 1\BbbA T

\bigr] 
\bfitg (t) - \beta \bfitH (t)\bfitmu \bfzero 

+
1

2

\bigl[ 
\bfitH (t)\BbbA \bfitS  - \bfone  - \bfitI 

\bigr] 
diag(\BbbA T\bfitH (t)\BbbA ),(7.12)

with final conditions \bfitg (tf ) = 0 and \bfitH (tf ) =  - \bfitF . The solution is constant between
two consecutive events and is recomputed at each event arrival.

7.2. Reinforcement Learning. The previously described SOC-based approaches
have two main drawbacks:

\bullet The functional forms of the intensities and mark distributions are constrained
to be from a very restricted class, which does not include the state-of-the-art
RNN-based HP models, such as those described in section 5.

\bullet The objective function being optimized is also restricted to very specific
classes of functions, so as to maintain the tractability of the problem.

To circumvent these drawbacks, some approaches have been proposed which combine
more flexible and expressive HP models with robust stochastic optimization proce-
dures independent from the functional form of the objective function.

One of these methods, called ``deep reinforcement learning of marked temporal
point processes"" [80], considers a given set of possible actions and corresponding
feedbacks, which are both expressed as temporal point processes jointly modeled by
an RNN-based intensity model \lambda \ast \theta (t),

(7.13) \lambda \ast \theta (t) = exp(b\lambda + wt(t - ti) + \bfitV \bfitlambda \bfith \bfiti ),

with
\bfith \bfiti = tanh(\bfitW \bfith \bfith \bfiti  - \bfone +\bfitW \bfone \scrT i +\bfitW \bftwo \bfity \bfiti +\bfitW \bfthree \bfitz \bfiti \bfitW \bffour \bfitb \bfiti + \bfitb \bfith ),

where
\scrT i = fT (ti  - ti - 1) and \bfitb \bfiti = fb(1 - bi, bi),

and
\bfity \bfiti = fy(yi) if bi = 0, and \bfitz \bfiti = fz(zi) if bi = 1.

The term bi is an indicator function to whether the ith event is an action or a feedback.
By taking the weight matrices and bias vectors from all the linear transformations f
of a parameter vector \theta , the algorithm wishes to update this vector with the gradients
of each parameter over an expected reward function J(\theta ):

(7.14) \theta l+1 = \theta l + \eta l\nabla \theta J(\theta )| \theta =\theta l ,

(7.15) \nabla \theta J(\theta ) = \BbbE \scrU T p\ast 
\scrU ,\theta (\cdot ),\scrF T p\ast 

\scrF ,\phi (\cdot )[R
\ast (T )\nabla \theta log\BbbP \theta (\scrU T )],

where

(7.16) p\ast \scrU ,\theta = (\lambda \ast \theta ,m
\ast 
\theta )

is the joint conditional intensity and mark distribution for action events, and

(7.17) p\ast \scrF ,\phi = (\lambda \ast \phi ,m
\ast 
\phi )

is the joint conditional intensity and mark distribution for feedback events. The re-
ward R(T ) is defined over some domain-specific metric, which may involve the respon-
siveness of followers in a social network setting, or the effectiveness of memorization
of words in a foreign language, in a spaced repetition learning setting.
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7.3. Imitation Learning. Another way of using this reinforcement learning ap-
proach is through a technique called ``imitation learning"" [47]. The reasoning behind
it is to treat the real-data sequences as having been generated by an expert and then,
using RNN-based sequence generation, try to make these models approximate the
real-data sequence as closely as possible.

Thus, the reward function that dictates the proportion by which the gradients of
the parameters over each sequence are going to be considered is equal to how likely
this given sequence is to be drawn from the underlying distribution over the real data.
This similarity is computed through an RKHS.

The theory of the RKHS is very extensive, and it is not our goal to give a detailed
account of it here. The key idea is that, to compute similarities among items of a
given space, you compute inner products between them. Taking two items, x1 and
x2, and computing a so-called positive definite kernel (PDK) K(x1, x2) is equivalent
to computing an inner product among these two items in a high-dimensional, and
potentially infinite-dimensional, vector space. The PDK used in the paper mentioned
above is the Gaussian kernel.

The reward function is then defined as

(7.18) \^r\ast (t) \propto 1

L

L\sum 
l=1

N
(l)
T\sum 

i=1

\BbbK (s
(l)
i , l) - 1

M

M\sum 
m=1

Nm
T\sum 

i=1

\BbbK (t
(m)
i , t),

where
\bullet L is the number of expert trajectories;
\bullet M is the number of trajectories generated by the model;
\bullet \BbbK (\cdot , \cdot ) is the reproducing kernel operator;

\bullet s
(l)
i is the ith time coordinate of the lth expert trajectory;

\bullet t
(m)
i is the ith time coordinate of the mth model-generated trajectory.

The parameters of the model are then updated through a gradient descent based
approach toward convergence, in which the model is expected to generate sequences
indistinguishable from the real-world process.

8. Real-World Data Limitations. One key aspect of HP modeling which in-
evitably encompasses all the previously mentioned approaches is that of their appli-
cability to real-world datasets. These may present a series of systematic issues on
the training and testing sequences that could entirely hinder the generalization of the
models. We now discuss some key issues, along with some recently proposed methods
designed to handle each of them.

8.1. Synchronization Noise. Temporal data, especially multivariate data, may
have event streams extracted from distributed sensor networks. A key challenge is
that of synchronization noise, i.e., when each source is subject to an unknown and
random time delay.

In this case, an inference procedure which neglects these time delays may ignore
critical causal effects of some events on others, thus resulting in a poorly generalized
model. The work in [78] deals specifically with this aspect of real-data HP modeling,
and it proposes, for the exponential triggering functions HPs, the inclusion of the
random time shift vector (one entry for each distinct event stream) as a parameter in
the HP model, which results in an inference procedure of the following form:

(8.1) \^\bfitz , \^\bfittheta = argmax
\bfitz \in \BbbR ,\theta \geq 0

log\BbbP (\~\bfitt | \scrN ,\bfittheta ),
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where \scrN is the random noise vector, and \bfittheta corresponds to the parameters of the
original exponential HP model.

8.2. Sequences with Few Events. In many domains, available data is scarce,
and the event streams will be composed of too few events, which results in noisiness
of the likelihood and, as a consequence, unreliability of the fitted HP model, which
calls for strong regularization strategies over the objective functions to be optimized.

For this type of situation, one approach, presented in [72], deals with HPs with
triggering functions defined as exponentials and also as a mixture of Gaussian ker-
nels, as in [91]. Then the parameters left to search are the background rates vector
\bfitmu and the tensor of weightings \bfitA for the excitation functions. The optimization is
done through a variational expectation-maximization algorithm, which takes the dis-
tributions over these parameters as Gaussians and optimizes, through Monte Carlo
sampling, over an evidence lower bound (ELBO) of their corresponding loglikelihoods
over a set of sequences.

8.3. Sequences with Missing Data. Another issue in HP modeling concerns
learning from incomplete sequences, i.e., streams in which one or more of the events
are missing. For this type of problem, two rather distinct approaches were recently
proposed:

1. The first approach, presented in [76], is applied to exponential and power-law
HPs and consists of a Markov chain Monte Carlo based inference over a joint
process implicitly defined by the product of the likelihoods of the observed
events and of the so-called virtual event auxiliary variables, which are can-
didates for unobserved events. This virtual variable is weighted through a
parameter \kappa , which is related to the percentage of missing events w.r.t. the
total event count.

2. The second approach, introduced in [57], proposes finding the missing events
over the sequences through importance weighting of candidate filling event
subsequences generated by a bidirectional LSTM model built on top of the
neural HP [56].

9. Application Examples. In this section, we apply the HP modeling learned so
far to case studies for three different domains: retweeting behavior in social networks,
earthquake aftershocks, and malaria outbreak forecasting. We also make a few re-
marks about the use of HPs in financial modeling. We hope this will encourage the
reader to consider HPs as a modeling choice for a broad scope of applications.

9.1. Retweet. In [21], HPs are used jointly with latent Dirichlet allocation (LDA)
[10] models for distinguishing between genuine and fake (i.e., artificially induced)
retweeting of posts among Twitter users.

Consider a set of 2508 users, with each jth user corresponding to a sequence

(9.1) RTj = \{ (tji ,\scrW 
j
i )\} 

Nj
i=0,

where tji corresponds to the timestamp associated with the ith retweet from the jth

user, and \scrW j
i is the text content of the corresponding retweet.

The 2508 corresponding sequences are manually separated between genuine and
fake users and labeled as such, based on a set of criteria (e.g., the content in most
of said user's retweets contains spammy links and common spam keywords; multiple
retweets from a given user contain promotional/irrelevant text; the user's biographical
information is fabricated or contains promotional activity; or a large number of tweets
or retweets are posted within a very short time window of just a few seconds).
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The two resulting disjoint sets were used for training two LDA models, LDAf and
LDAg, for modeling the topics of fake and genuine retweeters, respectively. Given
a predefined number of possible topics, here set as 10, and a given text content
\scrW j

i , the LDA model outputs a 10-element vector with the probabilities of the \scrW j
i

corresponding to each of the 10 possible topics.
The 10-element vector \scrV f from LDAf is concatenated with the 10-element vector

\scrV g from LDAg and, together with the baseline intensity \mu and the decay \beta of an

exponential HP with \phi (t) = e - \beta t, fitted over the tji 's of each jth sequence, it forms a
feature vector

(9.2) \{ \scrV j
f ,\scrV 

j
g , \mu 

j , \beta j\} ,

which is then fed into a clustering algorithm that aims to correctly classify each of
the 2508 retweet sequences between fake and genuine. The intuition behind this
hybrid HP-LDA model is to use temporal features from the HP modeling together
with context (written) features from the users to improve the resulting detection
algorithm.

9.2. Earthquake Aftershocks. It is well known from the study of earthquake-
related time series that a strong first seismic shock gives way to a series of weaker
aftershocks, which occur in a very restricted time window [63].

For modeling this self-exciting property of the aftershock arrivals, [63] proposes
a power-law self-triggering kernel

(9.3) \phi PWL(t, \theta PWL) =
K

(t+ c)p
,

with \theta PWL = (K, c, p) \in \BbbR 3
+ as trainable parameters. This model, together with an

additional baseline rate parameter \mu , is fitted over the temporal sequence \{ t1, t2, . . . , tn\} 
of aftershock timestamps with an MLE optimization procedure, such as the one in
(2.17), in which, due to the simple parametric form of the equation for the intensity,
the loglikelihood can be given in closed form.

9.3. Malaria Outbreak Forecasting. The work in [79] proposes one possible way
of modeling the diffusion of malaria cases within a given population by assuming it
behaves as an HP of time-dependent background rate

(9.4) \mu (t) = max

\biggl( 
\scrE + \scrJ t+\scrQ cos

\biggl( 
2\pi t

\scrX 

\biggr) 
+ \scrZ sin

\biggl( 
2\pi t

\scrX 

\biggr) 
, 0

\biggr) 
,

with

(9.5) \scrX = 365.25

and constants \scrE ,\scrJ ,\scrQ , to account for the yearly seasonality of imported cases, as well
as a Rayleigh-type triggering kernel

(9.6) \phi (t - (ti +\scrD )) = \upsilon (t - (ti +\scrD ))e

 - \varrho (t - (ti +\scrD ))2

2

with

(9.7) t > ti +\scrD and \upsilon , \varrho \geq 0,
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with an additional delay term \scrD .
This non-strictly-decaying choice of \phi (t) is due to the fact that a person is not

most infectious right after being bitten by the disease-transmitting mosquito. The
delay term accounts for the incubating period of the bitten person, until they become
infectious.

The defined parameters are fitted to streams of reported cases from China and
Eswatini through a modified MLE strategy, to account for the resulting nonconvexity
of the underlying loglikelihood.

9.4. Financial Modeling. The suitability of HPs to model sudden jumps in con-
tinuous time, without the need for time discretization strategies, has made them
broadly applicable to a number of intraday high-frequency financial applications, such
as in the following works:

\bullet [3] applies HPs with exponential kernels to study the self- and mutually ex-
citing effects among credit default swap market shocks in several European
countries.

\bullet [22] proposes a generalized version of HP which accounts for different opening
hours of the markets due to time zone differences. It goes on to study the
self- and mutually exciting behavior of price jumps in the S\&P 500 and the
Euro Stoxx 50.

\bullet [1] uses a multivariate HP with exponential kernels to model the arrival of
trades and cancellations of a limit order book.

For a comprehensive treatment of HPs in finance, the reader should refer to two
excellent survey works focused specifically on this topic [30, 7].

10. Comparisons with Other Temporal Point Process Approaches. HPs, and
the simpler Poisson processes, have been the most prevalent choice for modeling time
event sequences, but other approaches have been proposed that occasionally surpass
the performance of HPs in some situations:

\bullet Wold processes: These are the equivalent of an HP in which only the effect
of the most recent event is considered in the computation of the intensity
function. This Markovian aspect, regardless of the choice of the excitation
function, has been shown in [23] to surpass the performance of several HP
models for the estimation of networked processes.

\bullet Intensity-free learning of interevent intervals: Another approach which has
been recently introduced involves ignoring the intensity function completely
and focusing on modeling the probabilistic distribution of the time intervals
among consecutive events. This distribution is modeled using normalizing
flows [68], which can be summed up as families of distributions with in-
cremental complexities. The approach was introduced in [74, 75] and was
shown to surpass state-of-the-art neural-based HP models in some large-sized
datasets.

\bullet Continuous-time Markov chain: In this model, the marks correspond to states
which have fixed rates (intensities) associated to them. The transition times
are sampled from these constant intensities. It has been used as a comparison
baseline for some HP models, such as [20].

11. Current Challenges for Further Research. We mention the following chal-
lenges currently tackled by HP researchers:

\bullet Enriching HP variants (parametric, nonparametric, neural) or blending them
with other machine learning approaches, so as to make them suitable for spe-
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cific situations. Work with multiarmed bandits [15], randomized kernels [35],
graph neural networks for temporal knowledge graphs [27], and composition
of HP-like point processes with warping functions defined over the time event
sequences [90] fall into this category.

\bullet Improving the speed of inference or sampling to reduce the time spent in
model estimation, an aspect which may be critical for some real-world appli-
cations. The works of [34] in Bayesian mitigation of spatial coarsening, [104]
in multiresolution segmentation for nonstationary HPs using cumulants, [48]
on thinning of event sequences for accelerating inference steps, [54] on the use
of Lambert-W functions for improving sequence sampling, and [13] on perfect
sampling are examples of this aspect, as well as [65] on recursive computation
of HP moments.

\bullet How to properly evaluate and compare HP models: While there has been a
lot of work proposing new approaches, the comparison among existing models
is often biased or incomplete. The works of [82] on how to quantify the
uncertainty of the obtained models, [85] on measuring goodness-of-fit, [55] on
robust identification of HPs with controlled terms, and [11] on the rigorous
comparison of networked point process models address this type of challenge.

\bullet Theoretical guarantees, properties, and formulations of specific HP approaches,
such as work done in [14] on strong mixing, [26] on the consistency of some
parametric models, [16] on elementary derivations of HP momenta, and [39,
40] on field master equation formulation for HPs.

12. Conclusions. Hawkes processes are a valuable tool for modeling a myriad
of natural and social phenomena. The present work has aimed to give a broad view,
suitable for a newcomer to the field, of the inference and modeling techniques involved
in the application of HPs in a variety of domains. The parametric, nonparametric,
deep learning, and reinforcement learning approaches were broadly covered, as well
as the current research challenges on the topic and the real-world limitations of each
approach. Illustrative application examples in the modeling of retweeting behavior,
earthquake aftershock occurrence, and malaria outbreak modeling were also briefly
discussed, to motivate the applicability of HPs in both natural and social phenomena.

Acknowledgments. The author would like to thank Thanh Nguyen-Tang, as
well as the anonymous reviewers, for constructive comments on earlier versions of this
work.
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