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Abstract

Hawkes Processes have undergone increasing popularity as default tools for model-
ing self- and mutually exciting interactions of discrete events in continuous-time
event streams. A Maximum Likelihood Estimation (MLE) unconstrained optimiza-
tion procedure over parametrically assumed forms of the triggering kernels of the
corresponding intensity function are a widespread cost-effective modeling strategy,
particularly suitable for data with few and/or short sequences. However, the MLE
optimization lacks guarantees, except for strong assumptions on the parameters
of the triggering kernels, and may lead to instability of the resulting parameters .
In the present work, we show how a simple stabilization procedure improves the
performance of the MLE optimization without these overly restrictive assumptions.
This stabilized version of the MLE is shown to outperform traditional methods
over sequences of several different lengths.

1 Introduction

Temporal Point Processes are mathematical objects for modeling occurrences of discrete events in
continuous-time event streams. Hawkes Processes (HP) [12], a particular form of point process, are
particularly suited for capturing self- and mutual-excitation among events, i.e., when the arrival of
one event makes future events more likely. HPs have recently undergone increasing popularization in
both natural and social domains, such as Finance [5, 10, 2], Social Networks [27, 41], Earthquake
Occurrences [23, 14], Criminal Activities [22, 19], Epidemiology [28] and Paper Citation counts
[35].

In HPs, the self- and mutual-excitation is represented by the addition of a term in the expected rate of
event arrivals: the triggering kernel. The ubiquity of applicability of HPs has given rise to a myriad
of modeling approaches for this triggering effect, inspired by parametric functions (e.g., Exponential,
Power-Law, Gaussian) [26, 36, 20] and Gaussian Processes [39]. For data hungry applications,
choices such as non-parametric methods [37, 6, 17, 40], Neural Networks (NN) [21, 9, 34, 25, 30],
Attention Models [38, 42], have been proposed. Furthermore, improvements regarding real-world
data limitations and challenges are developed in [31, 32, 29].

For datasets with few and/or short sequences, a parametric choice of the triggering function is the
default modeling choice [8], as a way of making use of domain knowledge to meaningfully capture
the main aspects of the triggering effect. In this approach, several forms have been proposed, such
as Exponential [12], Power-Law [41, 4], Rayleigh [18], Tsallis Q-Exponential [18] and Gaussian
[33]. An additional, recently introduced, parametric modeling choice, the Mittag-Leffler function [8],
which is not feasible for explicit gradient-based optimization, is left for future work.

∗This work was not supported by any organization.

Preprint. Work in Progress.



After the choice of the function, an unconstrained optimization is carried out for obtaining the MLE
parameters. Unfortunately, both the non-convexity of the implicitly defined likelihood function, as
well as eventual ill-conditioning of the initialization of the to-be-optimized self-triggering function
parameters,may lead to a consequent instability of the resulting model, which is to say that the
resulting HP may asymptotically result in an infinite number of events arriving in a finite time
interval.

A recent work [13] proposes a Convex Conjugate approach to tackle the non-convexity of the
likelihood function. Regarding the stability of parameters, [16] performs a theoretical analysis
of unstable HPs, while [15, 3] point to HPs with nearly unstable parameter as suitable for some
application domains. Nevertheless, [15] restricts itself to the normalization of exponential kernel by
its amplitude parameter, while [3] concerns itself uniquely with asymptotic results, i.e., when the
sequence of events is observed for a time window [0, T ], with (T →∞). The work closest to ours is
the one in [18], which can be shown to be a particular case of our algorithm, for a specific value of
the Stabilization Resolution (SR) parameter (M=2).

In the following sections, we:

• Describe the MLE for Parametric HPs, along with the proposed choices for the triggering
function;

• Introduce out Fine-Grained Stabilization MLE procedure (FGS-MLE);
• Validate the stabilization procedure on sets of several different lengths, also accounting for

misspecification of each parametric form, with respect to one another.

2 Parametric Maximum Likelihood Estimation of Hawkes Processes

In the following, we restrict ourselves to the Univariate HP case. A realization of a Temporal Point
Process over [0, T ] may be represented by a Counting Process Nt such that dNt = 1, if there
is an event at time t, or dNt = 0, otherwise. Alternatively, it may be represented by a vector
S = {t1, t2, ..., tN}, which contains all the time coordinates of the event arrivals considered in the
realization of the process.

A Conditional Intensity Function (CIF) λ(t), may be defined over Nt as:

λ(t)dt = E{dNt = 1|Ht}, (1)

whereHt = {∀ti ∈ S|ti < t}.
The CIF of a Hawkes Process is defined as:

λHP (t) = µ︸︷︷︸
background rate

+
∑
ti<t

φ(t− ti)︸ ︷︷ ︸
excitation function

, (2)

in which µ ∈ R+ is the background rate or exogenous intensity, here taken as a constant, while
φ(t) ∈ R+ is the excitation function or triggering kernel (TK), which captures the influence of past
events in the current value of the CIF.

In the present work, we will deal with the following five types of parametric TKs:

Exponential (EXP(α,β)). The exponential function is hereby defined as:

EXP (α, β) = αe−βt (3)

It is a default choice for modeling quick monotonic decay of the triggering effect, found to be suitable
for domains such as high-frequency finance. Its markovian property allows to compute the influence
of all past events in the intensity function by considering only its value at the most recent event.
Power-Law (PWL(K,c,p)). The power-law function is hereby defined as:

PWL(K, c, p) =
K

(t+ c)p
(4)

It has been adopted for representing a slow monotonic type of decay, which has found applications in
domains such as Social Network analysis [41] and Earthquake Modeling [24].
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Tsallis Q-Exponential (QEXP(a,q)). The Tsallis Q-Exponential is hereby defined as:

QEXP (a, q) =
ae−t q = 1

a [1 + (q − 1)t]
1

(1−q) q 6= 0 and 1 + (1− q)t > 0
0 q 6= 0 and 1 + (1− q)t ≤ 0

(5)

It was proposed first in domains such as Quantum Optics and Atomic Physics. Here, it is intended to
be a continuous deformation among the exponential and power-law types of influences, specially in
those situations in which these are not easily distinguishable [7].

Rayleigh (RAY(γ,η)). The rayleigh kernel is hereby defined as:

RAY (γ, η) = γte−ηt
2

(6)

It was previously used for diffusion modeling over networks [11]. Here, it is intended to represent a
non-monotonically decaying and skewed type of influence, which reaches its peak some time after
the event occurrence itself. Domains such as online forums’ response rates were shown to not adjust
well to strictly decaying effects, such as those of exponential and power-law [9].

Gaussian (GSS(γ,η)). The gaussian kernel [33] is hereby defined as:

GSS(κ, τ, σ) = κe
−

(t− τ)2

σ (7)

It models a non-strictly decaying effect, such as that of the Rayleigh, but in a symmetric way.

The Maximum Likelihood Estimation procedure for parametric HPs consists in, given a choice of
triggering kernels, along with its implicitly defined form of CIF, finding a tuple of optimal parameters
(µ∗, θ∗) such that:

(µ∗, θ∗) = argmax
µ∈R+,θ∈Ω

LS(µ, θ), (8)

where the loglikelihood function LS(µ,θ) over a sequence S is defined by:

LS(µ,θ) =
∑
i∈N

log λHP (ti)−
∫ T

0

λHP (t)dt︸ ︷︷ ︸
Compensator

(9)

In practice, this optimization is done through gradient-based updates, with a learning rate δ, over µ
and each of the parameters:

µi+1 = µi + δ∇µiLS(µi,θi) θi+1 = θi + δ∇θiLS(µi,θi) (10)

up to a last iterate I, which is implicitly defined by a stopping criteria (e.g., Optimality Tolerance or
Step Tolerance).

This procedure, first introduced in [26], lacks theoretical guarantees with respect to the convexity
of LS(µ,θ), over finite sequences, for a more general choice of φ(t). In practice, very restrictive
assumptions are made, such as fixing α = β in the EXP(α,β) kernel, and constraining the initial
values of the parameters, in advance, to be very close to the optimal values. Both of these are
unfeasible for practical applications, when the true values of the parameters are hardly known.
Prescinding from these often lead to the resulting final values of parameters to be very far from the
optimal, and frequently corresponding to unstable configurations, i.e., when:∫ ∞

0−
φ(t)dt > 1 (11)

This condition leads the underlying HP to be asymptotically unstable, generating an infinite number
of events over a finite time interval as the length of the sequence S extends up to infinity.

In the next section, we will present a stabilization method, which preserves the stability of the
corresponding φ(t) for each of the five introduced parametric forms of triggering kernels, without
constraining their originally considered parameter space Ω. This stabilization is performed after the
last iterate value of the parameters, through closed-form computations.
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Figure 1: Diagram of the two-dimensional stabilization procedure. Given values for M and ε,
the algorithm consists in finding (M+1) points inside the stable region for the two-dimensional
parameter vector θ, each at a distance ε from the boundary. The (M+1) points represent a gradual
change of the relevance of each component of θ to the its final stabilized value. The procedure for
higher-dimensional θ follows analogously.

3 Fine-Grained ε-Margin Closed-Form Stabilization of Parametric Hawkes
Processes

In this section, we describe the stabilization procedure for the MLE of parametric HPs. It essentially
consists of finding stable configurations for both µ and φ(t) in a closed-form way, with a pre-defined
values for stability margin and resolution. An intuitive graphical description of the stabilization
method is shown in Figure 1
Definition 3.1. Stabilized Hawkes Process

Given a Hawkes Process implicitly defined by its background rate µ ∈ R+ and its triggering kernel
φ(t) : Ω × R+ → R+, its corresponding Stabilized Hawkes Process is found by obtaining new
parameter values µε ∈ R+

ε and φε(t) : Ωε × R+ → R+ such that:

|φε| =
∫ ∞

0−
φε(t) =

1

1 + ε
, µε =

Λ

1 + |φε|
→ θε = argmax

θ∈Ωε

LS(µε,θ) (12)

where Ωε is a (M × dim(θ))-sized set defined in Definition 3.2
Definition 3.2. ε-Margin Fine-Grained Parameter Set Ωε

Given last iterate parameter vector θI ∈ Ω (with D = dim(Ω)), a margin parameter ε ∈ (0, 1),
a Stabilization Resolution parameter M ≥ 3, and two subindexes, j and k (j 6= k), from the θI
parameter vector, the ε-Margin Fine-Grained Parameter Set Ωε is defined as a (M+1)×dim(Ω)-sized
tuple such that:

Ωε = {θI , θ0, θ1, ..., θM}, (13)
with each θi = {θdi }Dd=1 (i ∈ {0, 1, ...,M}) computed such that∫ ∞

0−
φθji

(t)dt = 1/(1 + ε)

i

M

∫ ∞
0−

φθki (t)dt = 1/(1 + ε)

M − i
M , (14)

where φθji (t) denotes the original φ(t) with only the j-th parameter replaced by a value which leads
φ(t) to satisfy the given stabilization condition.

3.1 Closed-Form Computation of Ωε for Parametric Hawkes Processes

In this subsection, we detail the closed-form calculations of the stabilized parameter set Ωε for each
of the parametric forms for φ(t) detailed at Section 2.

3.1.1 Example 1: Closed-Form Stabilization of EXP(α,β)

For φ(t) = EXP (α, β), we have θI = (αI , βI) ∈ R+
2 . By defining M, ε, j = 1 and k = 2, with

α = θ1, β = θ2 and |φ| =
∫∞

0− φ(t), we can readily find:

Ωε = {(αI , βI)} ∪ {(αI/(|φ|(1 + ε))

i

M ), βI(|φ|(1 + ε))

M − i
M )}Mi=0 (15)
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3.1.2 Example 2: Closed-Form Stabilization of PWL(K,c,p)

For φ(t) = PWL(K, c, p), we have θI = (KI , cI , pI) ∈ R+
3 . By defining M, ε, j = 1 and k = 2,

with K = θ1 and c = θ2, we can readily find:

Ωε = {(KI , cI , pI)} ∪ {(KI/(|φ|(1 + ε))

i

M , cI((|φ|(1 + ε))

M − i
M )

1

pI−1 , pI)}Mi=0 (16)

By defining j = 1 and k = 3, with K = θ1 and p = θ3, we can readily find:

Ωε = {(KI , cI , pI)}∪(KI/(|φ|(1 + ε)), cI , pI)∪{(KI/(|φ|(1+ε))

i

M , cI , 1+
W (∆i log cI)

log cI
)}M−1
i=0

(17)
where

∆i = (|φ|(1 + ε))

M − i
M (pI − 1)cI

(pI−1)
(18)

and W is a standard function, taken as the analytical continuation of branch 0 of the product log
(Lambert-W) function.

3.1.3 Example 3: Closed-Form Stabilization of QEXP(a,q)

For φ(t) = QEXP (a, q), we have θI = (aI , qI) ∈ R+
2 . By defining M, ε, j = 1 and k = 2, with

a = θ1, q = θ2 and |φ| =
∫∞

0− φ(t), we can readily find:

Ωε = {(aI , qI)} ∪ {( a

(|φ|(1 + ε)
)

i

M , 2− (2− q)(|φ|(1 + ε))

M − i
M )}Mi=0 (19)

3.1.4 Example 4: Closed-Form Stabilization of RAY(γ,η)

For φ(t) = RAY (γ, η), we have θI = (γI , ηI) ∈ R+
2 . By defining M, ε, j = 1 and k = 2, with

γ = θ1, η = θ2 and |φ| =
∫∞

0− φ(t), we can readily find:

Ωε = {(γI , ηI)} ∪ {(γI/(|φ|(1 + ε))

i

M ), ηI(|φ|(1 + ε))

M − i
M )}Mi=0 (20)

3.1.5 Example 5: Closed-Form Stabilization of GSS(κ,τ ,σ)

For φ(t) = GSS(κ, τ, σ), we have θI = (κI , τ I) ∈ R+
2 . By defining M, ε, j = 1 and k = 2, with

κ = θ1, τ = θ2 and |φ| =
∫∞

0− φ(t), we can readily find:

Ωε ={(κI , τ I , σI)} ∪ {(κI/(|φ|(1 + ε))

i

M , τ I
erfinv (2/κ

√
πσ(1 + ε)

M − i
M − 1)

erfinv (2|φ|
M − i
M /(κ

√
π
√
σ)− 1)

, σI)}M−1
i=0

∪ {(κI/(|φ|(1 + ε)), τ I , σI)},
(21)

where erfinv is the inverse of the error function (erf(z) =
2√
π

∫ z
0

e−x
2

dx). In practice, the arguments

of erfinv functions are constrained to be less than 1.

4 Experiments

For empirical validation of the proposed stabilization strategy, we performed experiments with
synthetic data generated from each of the five parametric forms, with µ set as 0.5, and parameter
values:

EXP (1.0, 1.1) PWL(0.9, 1.0, 2.0) QEXP (0.8, 1.1) RAY (1.2, 1.0) GSS(0.5, 0.5, 1.0),
(22)
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Since last iterate θI ∈ Ωε, then clearly maxθ∈Ωε L(θ,S) ≥ L(θI ,S). Our goal is, then, verifying
the rate with which the stabilization algorithm output strictly outperforms θI , including those cases
of model misassignment (e.g., an exponential kernel is used to fit a sequence generated by a gaussian
kernel, and so on). In the following, we investigate the performance of the stabilization algorithm
over sequences of several different horizons T, and also verify the influence of margin parameter
ε and stabilization resolution M on the success rate of stabilized kernels. The MLE optimization
procedure is carried out with the standard Nelder-Mead method implementation from the Python
SciPy library. As an example, a success rate of 0.9 for EXP kernel fitted over sequences generated
with GSS kernels mean that the likelihood of the parameters returned by the stabilization method is
strictly higher than the original MLE last iterate θI in 90 % of the corresponding sequences.

4.1 Influence of horizon T

We considered the horizon values T ∈ {10, 50, 100, 500}. For each value of T, we verified the
performance of the stabilized search from each kernel type in 10 sequences of each kernel type, thus
also accounting for misspecification of the parametric form. We fixed ε = 0.1 and M = 4. The
results are shown in Figure 2.
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Figure 2: Influence of time horizon T in the performance of Stabilization Procedure.

Overall, success rates of the stabilized parameters outperforming the original last iterates tend to be
higher at the midsize and larger sequences (T ∈ {50, 100, 500}), than at the smallest ones (T = 10).

4.2 Influence of Stabilization Resolution parameter M

For verifying the effect of the Stabilization Resolution parameter M, we fixed ε = 0.1 and T = 100
while considering M ∈ {4, 8, 10, 50}.
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Figure 3: Influence of Stabilization Resolution M in the performance of Stabilization Procedure.

With the increasing of M above the lowest chosen value of 4, the success rates of the stabilized
parameters show some slight increase some choices of fitting kernels, as shown in Figure 3. Since the
stabilized set is computed in closed-form, larger values of M do not significantly affect the complexity
of the algorithm, as long as it is kept low with respect to the average number of iterations of the initial
MLE optimization procedure. Thus, setting larger values for M still results in a slight improvement
over the performance of the algorithm.
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4.3 Influence of Margin parameter ε

For verifying the effect of the margin criterion ε, we fixed T = 100 and M = 6, and analyzed the
performance of the stabilization for ε ∈ {0.1, 0.01, 0.001, 0.0001}
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Figure 4: Influence of Margin Parameter ε in the performance of Stabilization Procedure.

Increasing ε intuitively means picking projected points which fall farther away from the instability
boundary. Figure 4 shows that a larger value of ε increases the overall success rate of the stabilization
procedure.

4.4 Performance across different optimization methods

For verifying the performance of the stabilization algorithms beyond the default choice of Nelder-
Mead method, we computed the average loglikelihood improvement for each kernel type across the
following optimization methods: Nelder-Mead, Conjugate Gradient (CG), BFGS, L-BFGS-B,
TNC, COBYLA and SLSQP.

All the methods were run with the default SciPy implementations, and the routines resulting in
overflow were ignored. The parameters used were: T = 100, ε = 0.1 and M = 6. The results are shown
in Table 1. The stabilization method shows increase in performance across all methods.

Method Nelder-Mead CG BFGS L-BFGS-B TNC COBYLA SLSQP

∆L +393.18 +17.56 +18.11 +28.74 +53.00 +1.30 +0.58
Table 1: Comparison of the stabilization method among different optimization methods. ∆L is the
average difference in loglikelihood among the stabilized kernel and the original last iterate kernel
across all sequences.

The kernel types with largest increase in performance were EXP and QEXP.

4.5 Baseline Comparisons on Real and Synthetic Data

For testing the quality of our stabilization algorithms, hereby denoted MLE- STAB, we performed
experiments with real data. The chosen datasets were "Hawkes","Retweet" and "Missing".Their
description and content can be found in [21]. For those datasets with more than one fold, only the
first fold was used. Besides, only sequences with more than 20 events were considered. The "Meme"
dataset had all sequences with a number of events which disallowed the fitting of all baselines, while
"Mimic" dataset resulted in only one sequence being properly fitted for comparison. Thus, both these
datasets were excluded from our comparison. The baselines chosen were those which allowed for
a more flexible modeling of the triggering function. They are the implementations of HawkesEM,
HawkesBasisKernels and HawkesConditionalLaw, publicly available in the tick library [1].

We intend to show here that, for most real-world applications, the number of events associated with
a given self-triggering dynamics is usually small. This fact is advantageous to simple parametric
functions, such as the ones we presented here. And the improvements proposed by the MLE-STAB
algorithm works on improving the predictive power of these simpler parametric models. The models
are fitted in the events up to 70% of T, here taken as the time of the last event. And then have
their loglikelihood evaluated in the final 30%. The loglikelihood of each sequence, discarding the
overflown ones, is then normalized by the number of events in the test portion. Unfortunately, the very

7



small number of events was prohibitive for the HawkesBasisKernels and HawkesConditionalLaw
models, thus only results for HawkesEM and MLE-STAB are displayed. The final average across
all sequences of the dataset is shown in Table.

Dataset /Method MLE-STAB HawkesEM

Hawkes 7.68 0.039
Missing 7.90 -0.06
Retweet 46.02 -20.68

Table 2: Comparison of the stabilization method with baseline over standardized datasets. The result
shown corresponds to the average, across all sequences, of the loglikelihood of the method on the test
portion of the given sequence (final 30% of the event horizon [0, T ]). The loglikelihood is normalized
by the number of events contained in this given test portion.

5 Conclusions

Hawkes Processes are particularly suited for modeling self- and mutually exciting interactions of
discrete events in continuous-time event streams, what corroborates the increasing popularity they
have enjoyed across many domains, such as Social Network analysis and High-Frequency Finance. A
Maximum Likelihood Estimation (MLE) unconstrained optimization procedure over parametrically
assumed forms of the triggering kernels of the corresponding intensity function are a widespread
cost-effective modeling strategy, particularly suitable for data with few and/or short sequences.
However, the MLE optimization lacks guarantees, except for strong assumptions on the parameters
of the triggering kernels, and may lead to instability of the resulting parameters . In the present work,
we show how a simple stabilization procedure improves the performance of the MLE optimization
without these overly restrictive assumptions, while also accounting for model misassignment cases.
This stabilized version of the MLE is shown to outperform the standard method over sequences of
several different lengths. The effects of resolution and margin parameters are also evaluated, as well
as baseline comparisons over standardized datasets.
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